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Preface

We are pleased to present to you the proceedings of the sixth Annual Interna-
tional Working Conference on Active Networks, which took place in October 2004
at The Information and Telecommunications Technology Center, The University
of Kansas, USA. The proceedings of IWAN 2004 mark a transition between the
funded active networking programs in Europe, Japan, and the United States and
a strong, continued interest in the architectures of programmable networks.

The technical committee accepted 14 papers for presentation from 32 submit-
ted papers. The papers are organized into sections on active network systems and
architectures, security in active networking, active network applications, mobile
active networks and active network management. Whereas the contributions on
active network architectures and management build upon mature concepts de-
vised in the previous years and are incremental follow-ups of the related research,
the security considerations are of primary importance to the active networks
practitioners. The papers on mobile applications of active networks, like TCP
gateways between wireless and wireline networks, provide additional inspirations
to the active network researchers.

Featured in the program were a keynote address by Jonathan M. Smith of
DARPA and two invited papers, one by Takashi Egawa, Yoshiaki Kiriha, and
Akira Arutaki on “Tackling the Complexity of Future Networks”, and one by
Bernhard Plattner and James Sterbenz, titled “Programmable Networks: Alter-
native Mechanisms and Design Choices”. Based on the reviewer feedback, the
authors of the paper “Dynamic Link Measurements Using Active Components”,
Dimitrios Pezaros, Manolis Sifalakis, Stefan Schmid and David Hutchison, all of
Lancaster University, were awarded this year’s Best Paper Award. During the
two days of the conference there were several lively discussions, including one at
the end of the first day on the scope and future of IWAN itself. The social event,
barbecue at the Circle-S ranch, provided a most enjoyable venue for discussion
and collegiality.

We would like to thank the members of the Program Committee for their
excellent work in reviewing, selecting, and in some cases shepherding papers for
the program. V. Rory Petty and F. “Ted” Weidling supported the Web site and
conference organization.

We appreciate the work of all the authors, they are the core of this workshop
and proceedings. The participation of all the attendees made an outstanding
conference. Enjoy the fruits of all their labors. We trust you will find these
proceedings interesting.

October 2004 Gary J. Minden
Ken Calvert

Marcin Solarski

Miki Yamamoto



Organization

IWAN 2004 was organized by The Information and Telecommunications Technol-
ogy Center (ITTC) at The University of Kansas. We would like to acknowledge
the support of our sponsors, The Information and Telecommunications Technol-
ogy Center, The University of Kansas, and Hitachi Ltd., and we thank them for
their contributions. Their support and the research presented in these proceed-

ings continue to demonstrate international interest in active networking.

Executive Committee

General Chair

General Co-chairs

Program Co-chairs

Gary J. Minden, The University of Kansas, USA

Tadanobu Okada, NTT, Japan
Bernhard Plattner, ETH Ziirich, Switzerland

Marcin Solarski, Fraunhofer FOKUS, Germany
Ken Calvert, The University of Kentucky, USA
Miki Yamamoto, Osaka University, Japan

Technical Program Committee

Stephane Amarger

Bobby Bhattacharjee

Matthias Bossardt
Bob Braden
Torsten Braun
Marcus Brunner
Ken Calvert
Hermann DeMeer
Takashi Egawa
Ted Faber

Mike Fisher

Alex Galis
Anastasius Gavras
Jim Griffioen
Robert Haas

Toru Hasegawa
Michael Hicks
David Hutchison
Javed Kahn
Andreas Kind
Yoshiaki Kiriha
Akira Kurokawa
Laurent Lefevre
John Lockwood
Douglas Maughan
Gary Minden
Toshiaki Miyazaki
Sandy Murphy
Scott Nettles
Bernhard Plattner

Sponsoring Institutions

The University of Kansas

Guy Pujolle

Lukas Ruf

Nadia Shalaby
Yuval Shavitt
Marcin Solarski
James Sterbenz
Christian Tschudin
Naoki Wakamiya
Marcel Waldvogel
Tilman Wolf

Miki Yamamoto
Krzysztof Zielinski
Martina Zitterbart

The Information and Telecommunications Technology Center

Hitichai



Table of Contents

IWAN 2004

Active Networking Systems

GateScript: A Scripting Language for Generic Active Gateways ........
Hoa-Binh Nguyen and Andrzej Duda

Management and Performance of Virtual and Execution Environments
N FAIN
Thomas Becker, Lawrence Cheng, Spyros Denazis,
Dusan Gabrijelcic, Alex Galis, George Karetsos, and
Antonis Lazanakis

Active Networking Security

Secure, Customizable, Many-to-One Communication .................
Kenneth L. Calvert, James Griffioen, Billy Mullins,
Leon Poutievski, and Amit Sehgal

Distributed Instrusion Prevention in Active and Extensible Networks . . .
Todd Sproull and John Lockwood

Secure Service Signaling and Fast Authorization in Programmable

NetWOTKS .« oot
Michael Conrad, Thomas Fuhrmann, Marcus Schéller, and
Martina Zitterbart

Invited Papers
Tackling the Complexity of Future Networks ........................
Takashi Egawa, Yoshiaki Kirtha, and Akira Arutaki

Active Networking Applications

Evaluation of Integration Effect of Content Location and Request
Routing in Content Distribution Networks ..........................
Hirokazu Miura and Miki Yamamoto

Building a Reliable Multicast Service Based on Composite Protocols
for Active Networks ... ...t
S. Subramaniam, E. Komp, M. Kannan, and G. Minden



VIII Table of Contents

Network Programmability for VPN Overlay Construction and
Bandwidth Management ... ......... .. .. .. . . i,
Bushar Yousef, Doan B. Hoang, and Glynn Rogers

Mobile Active Networks

A Framework for Developing Mobile Network Services ................
M. Sifalakis, S. Schmid, T. Chart, and A.C. Scott

Using Active Networking’s Adaptability in Ad Hoc Routing ...........
Seong-Kyu Song and Scott M. Nettles

Active Networking for TCP over Wireless .. .........................
Seong-Kyu Song and Scott M. Nettles
Active Networking Management

A Detection and Filter System for Use Against Large-Scale DDoS
Attacks in the Internet Backbone ............... ... ... ... .. ... ...,
Lukas Ruf, Arno Wagner, Karoly Farkas, and Bernhard Plattner

Dynamic Link Measurements Using Active Components ..............
D.P. Pezaros, M. Sifalakis, S. Schmid, and D. Hutchison

Simple Active Mechanisms for Measuring and Monitoring Service Level
Topologies ........... R R
Gisli Hjalmtysson, Olafur Ragnar Helgason, and Bjorn Brynjilfsson

Author Index . ... .



GateScript: A Scripting Language for Generic
Active Gateways

Hoa-Binh Nguyen and Andrzej Duda

LSR-IMAG Laboratory
Institut National Polytechnique de Grenoble
BP. 72, 38402 Saint Martin d’Heres, France
{Hoa-Binh.Nguyen, Andrzej.Duda}@imag.fr
http://drakkar.imag.fr

Abstract. In this paper, we present GateScript, a scripting language
for active applications to be executed on generic active gateways. Unlike
other active networking platforms, it offers a simple scripting language
for expressing custom processing of packets at different protocol layers
without the need for interpretation of complex protocol data structures.
In this way, the user writes statements in a script-like language while
using protocol-specific variables and predefined function calls acting on
the packet’s content. From a textual description, we automatically create
a packet parser and reassembler for a given protocol. The parser decom-
poses PDUs arriving in an active application into protocol variables that
can be used in the script language. After processing, outcoming packets
are reconstructed from the protocol variables. GateScript also enables
active applications to react to the state of the environment: they can
receive events from monitors and test variables reflecting the state of the
environment.

We have designed an architecture for a generic active gateway (GAG)
that supports GateScript. An active application can dynamically in-
stall/remove a packet filter that intercepts relevant packets and passes
them to the application. We have implemented GAG on Linux: its packet
forwarding part is implemented in the kernel and all other components
as user space processes.

1 Introduction

In our work, we address the problem of customizing user flows in active gateways
at the border of the network infrastructure. Unlike traditional proxy nodes, ac-
tive gateways provide transparent processing of data streams without the need
of configuring client hosts. An active gateway may be placed in the access net-
work, for example in the last router connected to a LAN. Many applications
may benefit from custom processing physically located close to the client host,
especially if it has limited resources. Consider for example small mobile devices
that require some adaptation or reaction to changing conditions, and pervasive
environments with various devices such as sensors or actuators—an active gate-
way can provide additional processing in the fixed network infrastructure. In

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 1 2007.
© IFIP International Federation for Information Processing 2007



2 H.-B. Nguyen and A. Duda

some cases, we may even want to place the gateway functionality on the end
system, so that the user can easily control, filter, or adapt flows arriving to the
device.

We have designed and developed GateScript, a scripting language for easy
programming of active applications that process packets in active gateways. Al-
though there are several platforms for adding programmability to a network
node, usually they are programmed in a full-fledged programming language such
as Java [8[I8], C [BI21], or TCL [I]. Moreover, many platforms require kernel
modules or plugins to be developed [I314], which can be done by experts, but it
is too tedious for most of users. With GateScript we want to offer a simple script-
ing language for expressing custom processing of packets at different protocol
layers without the need for interpretation of complex protocol data structures.
In this way, the user just writes a script that uses variables relative to a given
protocol and calls predefined functions working on the packet’s content.

More specifically, GateScript provides a higher level view than traditional
languages and automates the tasks of interpreting/constructing data packets.
Coupling protocol variables to values in a received packet is automatically done
by a packet parser generated from a formal description of a protocol. The vari-
ables available to script programs represent either protocol header fields (e.g.
$http.content type for a HTTP Reply or $tcp.window for a TCP segment)
or elements of the packet data content (e.g. $html.title for the title HTML
markup). When some values of variables are detected in a packet by the protocol
parser, they are made available to a script program so it can take some action or
modify them. Simple statements allow to test the values contained in a packet
and invoke functions able to modify its content or perform other actions such as
packet duplication or drop.

With GateScript, we also explore the possibility of coupling the behavior of an
active gateway with the state of the environment. Some active applications that
we call proactive are able to dynamically react and adapt to varying conditions
[I7]. They cooperate with monitors, special entities that observe the state of the
network, routers, or hosts. GateScript proposes a statement for waiting for an
event to execute some operations when a monitor signals an event.

To support GateScript, we have designed and implemented an architecture for
a generic active gateway called GAG. An active application can install a packet
filter that recognizes some packets according to the information in the packet
header and passes them to the application. Then, it is parsed and the GateScript
engine interprets the code of a script that processes the packet. Intercepting
packets can be activated and disabled dynamically, so that there is no overhead
for forwarding packets that do not require active processing.

We have implemented GateScript in Java and GAG on Linux. GateScript
currently integrates two generators of packet parsers: one based on Flavor [0]
oriented towards bitstream protocols and a second one based on JavaCC [12] for
text oriented protocols. The packet forwarding part of GAG is implemented in
the kernel and all other components, such as scripts written in GateScript, are
user space processes. We have experimented with GateScript by implementing
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several example active applications enhancing the behavior of transport and
application level protocols. Even if the performance was not our primary goal,
we have evaluated the overhead of intercepting packets in GAG and compared
the processing performance of GateScript with a standard HTTP Java-based
gateway such as Muffin [15].

In this paper, we present the main features of GateScript and illustrate their
use by some examples. We do not cover many other aspects such as secure
deployment of scripts on active nodes, control of active applications, node ad-
ministration, event generation by monitors, and experimentation with active
applications specialized for different protocols.

The paper is organized as follows. Section [2 introduces the architecture of
GAG. We describe GateScript in Section [B] and present its implementation in
Section Ml Section [ reports on our experience and presents a first evaluation
of the prototype. We discuss the related work in Section Bl Finally, we draw
conclusions in Section [

2 Generic Active Gateways

A generic active gateway needs to provide general support for processing the
content of different data flows and customizing the behavior of protocols. We
consider transparent gateways that are network nodes acting in a similar way
to routers: data packets are not directly addressed to them, rather they are
forwarded to a destination after processing some of them. The gateway forwards
packets in a usual way based on standard routing tables or according to the
effect of active packet processing.

Usually a gateway implementing active applications performs some packet
parsing, processing, and reconstruction while all these functionalities are com-
bined in the same piece of code. Our approach consists of separating packet
parsing and reconstruction from data processing to make them generic so that
they can be used for any bit oriented or textual protocol. The generic part of
an active gateway can be specialized for a given protocol or data flow based on
the structure of a PDU (Protocol Data Unit) defined by the protoco. Examples
of such a use are intelligent HTTP, RTSP, or SIP proxies, media transcoding
gateways (e.g. from HTML to WML), or adaptation gateways (e.g. from MPEG
to H.263).

An active gateway needs to support the following functionalities (we illustrate
them with examples in the context of HTTP when relevant):

e Active applications need to execute some code upon the arrival of a packet
or when the state of the system changes (e.g. when receiving a HTTP Reply,
check for the MIME type of the message body and filter out all images). The

1 'We use the term of a packet to designate the PDU entering an active gateway.
A packet may contain encapsulated PDUs defined by higher level protocols, e.g. a
TCP segment containing a HTTP Reply. When describing the protocol parsing part
within GateScript, we will use the term of a PDU.
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code of an active application should involve variables variables proper to a
given protocol (e.g. an active application should be able to test the MIME
type of the HTTP message body).

The value of a variable used in an active application should be set to the
value of a PDU field assigned when a packet is received by the gateway (e.g.
variable $http.content type should be set to the value image/jpeg for a
HTTP Reply containing a JPEG image).

A rich library of functions able to process specific data types should be
available to active applications (e.g. ReduceImageSize or TranscodeVideo
for processing objects in a HTTP Reply).

We need means for dynamically enable or disable processing of packets pass-
ing through a gateway to obtain good performance when custom processing
is not required.

Active applications require support for reacting to changes in their environ-
ment such as network congestion, host disconnection, lack of resources (e.g.
when a client host changes the access network, it may request to change
processing of packets, because of the increased available bandwidth).

f Generic Active Gateway \

-

Active Application —

|
Functions

Variables Code .
e GateScript
Eﬁ(}:> )
Values > S S Engine
Values @

PDU Parser PDU Reassembler

T
Monitors U
T

1

user space
kernel space

( Forwarding Kernel = W
Packet

Incoming Filter Matching Engine | outcoming
packets packets

Fig. 1. Architecture of GAG

The architecture of GAG, a generic active gateway supporting GateScript is

presented in Figure[ll GAG is composed of the following entities:

o Active applications that process some packet data. They are programmed us-

ing the GateScript scripting language. The script program involves variables
proper to a given protocol or representing the state of the environment.
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A GateScript engine for executing a script program once the variables used in

the program have their values assigned. It couples a script program with the

variables recognized in data packets and with the functions able to process
them.

e Protocol variables that represent fields defined in the PDU structure of a
given protocol or some parts of the packet content. Protocol variables are
predefined for any given protocol.

e A PDU parser for recognizing the structure of a given PDU contained in a
packet, parsing the data contents, and setting up variables used by the script
program of active applications.

e A PDU reassembler to reconstruct a data packet from the variables used
by the script program (the inverse function to the PDU parser). The PDU
parser and reassembler are automatically created from the description of a
given protocol.

e Processing functions, an extensible library of useful functions that allow to
process data packets. The functions are proper to a given protocol or to a
data format. They are supposed to be developed by an expert Java program-
mer, because they may require an extensive knowledge of a protocol, system
calls, and programming conventions (parameter passing, operations allowed
on the PDU context, cf. Section HI).

e Monitors able to detect varying conditions in the environment (network,
gateways, devices, services, hosts, users). In some cases it is important that
an active application reacts to the change of the system state. A monitor
can signal an active application by sending an event that can be tested in
the script program.

e A matching engine that allows to dynamically install and uninstall packet

filters responsible for intercepting packets and passing them to active ap-

plications. An active application can decide when to install or uninstall a

packet filter so that when intercepting packets is not needed, there is no

overhead of passing packets to the user space. Packets that do not match
any filter are forwarded in the standard way.

Active applications can be loaded or unloaded dynamically into the active
gateway. Some active applications that we call proactive cooperate with monitors
and are able to dynamically react and adapt to varying conditions.

3 GateScript Language

GateScript is a scripting language for programming active applications that pro-
cess packets in GAG gateways. Below we review the main constructs of the
GateScript language (see Appendix for more formal description).

3.1 Statements

A GateScript program is composed of statements. Each statement can test
the values of variables representing specific PDU fields and invoke appropriate
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functions. User defined variables can be declared and initialized using the set
statement and substitute to their values when preceded by $. There are several
types of statements:

— assignment statement to assign a value to a variable, e.g.

set State $AckState;

— conditional statement to execute one of two groups of statements based on

the test of a condition, e.g.

if ($ip.destination_address = $Client) then
WriteToCache;
endif

— function call to invoke a function with some arguments, e.g.

CheckIfExistPacket $tcp.Ack_Number

— event statement to wait for a condition related to an event and to execute a

statement when the event is received, e.g.

onEvent $EventName = "ClientDisconnects" then
PacketFilter "add $ClientIPAddress";
endEvent

When a monitor signals event ClientDisconnects, the application executes
function PacketFilter to install a packet filter for intercepting packets con-
taining the IP address of the client. In this way, the active application starts
receiving packets on behalf of the client, which can be for instance stored in
a cache for later delivery.

3.2 Variables

There are three kinds of variables:

— user defined variables that are not related to any protocol, e.g. variable

$State given in the example above.

— protocol-related variables that represent PDU fields or data content values,

e.g. variable $tcp.SYN representing the SYN TCP flag. The PDU parser
assigns values recognized in a packet to such variables each time a new
packet arrives in the gateway and is passed to the active application.

— monitor variables that represent the state of some environment conditions,

e.g. variable $Disconnected becomes true if a client host probed by a moni-
tor cannot be reached (we assume that we use a monitor able to detect such
a condition).

In GateScript PDUs arriving in an active application are decomposed into

protocol variables that can be processed in script statements. After processing
packets are completely reconstructed from the variables on the way out.

Variables can be combined by using operators to form expressions. Function

calls in expressions are separated from operators with square brackets.
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3.3 Events

When a monitor detects a modification in the state of the environment, it signals
an application with an event. An event has a name and a list of variables. Con-
sider the following example: an application subscribes to a congestion monitor
that detects congestion conditions in the network and passes some information
about the available resources:

onEvent $EventName = "Congestion" then
AdaptEncoding $AvailableBandwidth;
endEvent

The monitor signals the Congestion event and makes the current value of the
available bandwidth accessible. Upon this event, the monitor invokes a function
to adapt encoding.

3.4 Static Attribute

Statements may be static or not. A static statement is executed only once per
execution of a script, whereas a non static statement is executed each time a
packet is received and parsed. Such an execution semantics is needed when we
want to initialize some variables or start monitors. It allows keeping a limited
state during the execution of a script. Any statement can be static. As packet
processing is the main goal of active applications, statements are not static by
default. Consider the following example:

if ($tcp.SYN = 1) then
static set Client $ip.destination_address;
set State $SynState;

endif

If the active application receives a SYN TCP segment, it stores the IP desti-
nation address in the variable $Client and the current state of the connection
in the variable $State. The first assignment will be executed only once, while
the second one, every received SYN segment.

We can characterize GateScript as an active platform supporting limited state-
full packet processing—limited by the script language itself, because the static
attribute only allows initializing some variables of a script. However, if required,
it is extendable by functions such as WriteToCache.

3.5 Examples

The following three examples concern pervasive environments in which com-
puter devices connected via different types of networks provide the user with
some augmented functionalities. Due to energy or capacity limitations pervasive
environments and mobile components usually require some additional processing
to be done in the fixed network infrastructure by a proxy node or a gateway.
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The GateScript program presented below corresponds to TCP snooping [2].
It operates in a gateway located between the wired and the wireless parts of
the network. It caches TCP packets in order to respond more quickly to ACK
packets from a mobile client.

static set State O;
static set SynState 1;
static set AckState 2;
static set EtablishedState 3;
if ($tcp.SYN = 1) then
static set Client $ip.destination_address;
set State $SynState;
endif
if ($tcp.SYN = 1) and ($tcp.ACK = 1) and
($State = $SynState) then
set State $AckState;
ForwardPacket;
return;
endif
if ($State = $AckState) and ($tcp.ACK = 1) then
set State $EtablishedState;
ForwardPacket;
return;
endif
if ($State = $EtablishedState) then
if ($ip.destination_address = $Client) then
WriteToCache;
endif
if ($ip.source_address = $Client) then
if ([CheckIfExistPacket $tcp.ack_number]) then
ForwardFromCacheToClient $tcp.ack_number;
return;
endif
endif
endif
ForwardPacket;

The script performs TCP snooping for one TCP connection with a given
client host. At the beginning, it defines four variables to represent the state of a
TCP connection: $State, $SynState, $AckState, and $EtablishedState. For
each segment during the three-way handshake, the state is modified. When the
connection is established, the active application caches all the packets going to
the given client host and forwards them to the destination. When it detects by
means of the TCP ACK that the next not yet acknowledged segment resides in
the cache, it forwards it directly to the client (the TCP ACK number corresponds
to the next not yet received segment), and the ACK segment is dropped. In this
way, the client quickly obtains a retransmitted segment from the gateway instead
from the source.
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The next example presents a caching service for a mobile host. It subscribes to
a $PresenceMonitor that checks for the presence of a client host by periodically
sending ICMP Echo Request. The state of the client host is represented in the
variable $Disconnected updated by the monitor. When the state changes, an
event is sent to the active application: ClientDisconnects or ClientConnects.
Based on these events, the application enables or disables packet intercepting in
the kernel. At the beginning, when the client host is connected, the application
is running and packets go through the gateway without processing. When the
monitor detects the disconnection of the client host, it signals the application
that installs a packet filter for the IP address of the client. In this way, the
application starts receiving packets. Each packet is stored in a cache. When the
client host connects again, packets are forwarded to the host and the packet filter
is deleted so that packets are no longer processed by the active application.

static set Client "client.host.edu";
static PresenceMonitor $Client;

onEvent $EventName = "ClientDisconnects" then
PacketFilter "add $Client";

endEvent

onEvent $EventName = "ClientConnects" then
PacketFilter "delete $Client";

endEvent

if $Disconnected then
WriteToCache;

else
ForwardCacheToClient;

endif

The following example shows an active application that detects high temper-
ature and generates a fire alarm. First, it calibrates a raw measurement from a
temperature sensor, then it tests to detect whether it is higher than a prede-
fined threshold, and generates an event handled by applications that subscribed
to it. If the temperature is low, the packet is dropped. We assume a simple
packet structure with two fields: the sensor id and the raw measurement of the
temperature.

static set FireAlarmThreshold 50;
set Temperature [Calibrate $RawMesurement];
if $Temperature > $FireAlarmThreshold then
GenerateEvent "FireAlarm" [GetLocalization $SensorID];
else
DropPacket;
endif

The last examples illustrate a HT' TP gateway developed using GateScript—it
scans the HTTP traffic on behalf of a user and performs customization (filtering
out ad banners, reducing image size, etc.). Table [T lists the functions developed
to process HTTP typed objects.
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Table 1. Processing functions for HTTP

Name Functionality

RemoveTag Remove a tag

RemoveColor Remove color information
ContentDiscard Discard the data

ReducelImageSize Reduce image size
ColorToGreyScale Transcode to grey scale

ColorToBW Transcode to black and white
JPEGToGIF Transcode JPEG to GIF
GIFToJPEG Transcode GIF to JPEG
BreakPage Break page

FilterHtmlFrame Filter out a frame
FilterHtmlTable Filter out a table

The examples below deal with the content of Web pages. The first one filters
images by removing all image tags from an HTML page and by discarding all
image objects (RemoveTag function makes use of a HTML parser on a HTTP
object of type text/html).

if $http.content_type contains "text/html" then
RemoveTag "img";

endif

if $http.content_type contains "image" then
ContentDiscard;

endif

The next example reduces the size of JPEG images by half if the original image
is greater than 1 Kbyte.

if (($http.content_type = "image/gif") or
($http.content_type = "image/jpeg")) and
($http.content_length > 1000) then
ReducelImage 0.5;
endif

4 Implementation of GAG and GateScript

4.1 GAG Prototype on Linux

We have implemented GAG on Linux (its first version was called ProAN [I7]).
Linux is a good candidate for such an active node because of its properties: packet
forwarding support, loadable kernel modules, and the ease of modifying the ker-
nel behavior. The forwarding part of our architecture with the matching engine
is implemented in the Linux kernel. Each active application is implemented as
a user space process and may receive packets belonging to a flow defined by



GateScript: A Scripting Language for Generic Active Gateways 11

some packet properties such as source or destination address. An active applica-
tion may dynamically install and uninstall packet filters in the matching engine.
When installed, a packet filter passes matching packets to the application.

The matching engine uses Netfilter [I6], the support for custom processing of
packets in the kernel. It allows users to hook extended modules in the packet
forwarding path and to pass packets of a flow to a process in the user space
for further processing. After processing packets are re-injected into the kernel,
however the process cannot inject newly created packets into kernel so that some
processing such as packet duplication is impossible with standard Netfilter.

Another limitation of Netfilter is that only one process in the user space may
receive packets from the kernel. IP Queue Multiplex Daemon (ipqmpd) [11] adds
the possibility of passing packets from different flows to different user processes.
It communicates with user processes using sockets or other IPC mechanisms.
This is inefficient, because packets must re-enter the kernel before arriving in
the destination user process.

To obtain better performance of GAG, we have modified Netfilter to pass dif-
ferent packet flows directly to the right user process without going through the
multiplexer daemon. We use iptable to mark packets with the corresponding
process ID (PID) of the active application. When the ip queue module receives
the packets, it detects and forwards them directly to the right process. We have
also modified the ip queue module to support more than three modes of oper-
ation (drop a packet, pass the kernel metadata of a packet to the user process,
pass the metadata and the packet payload to the user process)—the standard
ip queue module always keeps a copy of a packet passed to a user space process.
A module can only modify the payload of packets and it is not possible for a
module to inject newly created packets into the kernel. With our modification,
when a packet is passed to a user space process in this mode, it uses a new
verdict value (NF INJECT) to inject a new packet into the kernel. Our version of
the modified ip queue currently supports 40 queues in the ip queue module.

4.2 GateScript Implementation

We have implemented GateScript in Java. A user space process implementing
each active application contains the GateScript engine as well as PDU parsers
and reassembler. A script program is compiled into an intermediate form in-
terpreted by the GateScript engine. The compilation is done only once per each
application activation. Protocol variables exist in the intermediate form, however
their values become assigned when a packet arrives in the application.

Internally, GateScript makes use of a structure containing the set of variables
corresponding to a PDU: the PDU context. It is a hashed table with all protocol-
related variables obtained from the parsing of a PDU. When a protocol parser
receives a PDU, it parses it and creates a PDU context. The GateScript engine
uses it when executing a program script and passes it to any invoked function,
which can change the variable values or may add more variables if necessary
(when developing functions, the programmer needs to carefully handle the PDU
context).
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Table 2. TCP/IP PDU described in Flavor

class TCP_IP {
unsigned int(4) ip.version;
unsigned int(4) ip.hdr_length;
unsigned int(8) ip.service_type;
unsigned int(16) ip.total_length;
unsigned int(16) ip.identification;
unsigned int(3) ip.flags;
unsigned int(13) ip.fragment_offset;
unsigned int(8) ip.ttl;
unsigned int(8) ip.protocol;
unsigned int(16) ip.header_checksum;
unsigned int(32) ip.source_address;
unsigned int(32) ip.destination_address;
if (ip.hdr_length>5)

{ unsigned int(8) ip.options[(ip.hdr_length*4-20)]1; }

unsigned int(16) tcp.source_port;
unsigned int(16) tcp.destination_port;
unsigned int(32) tcp.sequence_number;
unsigned int(32) tcp.ack_number;
unsigned int(4) tcp.data_offset;
unsigned int(6) tcp.reserved;
unsigned int(1) tcp.URG;
unsigned int(1) tcp.ACK;
unsigned int(1) tcp.PSH;
unsigned int(1) tcp.RST;
unsigned int(1) tcp.SYN;
unsigned int(1) tcp.FIN;
unsigned int(16) tcp.window;
unsigned int(16) tcp.TCP_Checksum;
unsigned int(16) tcp.urgent_pointer;
if (tcp.data_offset>5)

{ unsigned int(8) tcp.options[(tcp.data_offset-5)*4]; }

unsigned int(8) tcp.datalip.total_length-(ip.hdr_lengthx4)
-(tcp.data_offset*4)]; };

We use Flavor [6] to describe the structure of bitstream oriented protocols
such as IP, TCP, UDP, RTP, or X Window. The PDU description in Flavor
is compiled to generate a C++ or a Java class, integrated with the GateScript
engine to parse a bitstream, recognize the defined fields, and obtain their values.
Table 2] presents the description of an IP packet containing a TCP segment in
Flavor.

For text oriented protocols such as HTTP, FTP, SMTP, SNMP, RTSP, or
SIP we generate parsers using JavaCC [12]. We describe a given protocol in a
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Table 3. HTTP PDU described in JavaCC

options
{ USER_CHAR_STREAM = true; }

PARSER_BEGIN (HTTPResponseParser)
public class HTTPResponseParser
{ public Map PDUcontext; }
PARSER_END (HTTPResponseParser)

void HTTPParse(): {}

{{ PDUcontext = new HashMap(); }
Status_Line() <CRLF>

( Header() <CRLF> )=

<CRLF>

Message_Body ()

}

void Status_Line()
{ String version,reason_phrase;
int status_code; }
{ version = string() <SPACE>
{ PDUcontext.put("version",version); }
status_code = number() <SPACE>
{ PDUcontext.put("status_code",
new Integer(status_code)); }
reason_phrase = String();
{ PDUcontext.put("reason_phrase", reason_phrase); 1}}

void Header():

{ String header,value; }

{ header = string() ":" value = string()
{ header = header.replace(’-’,’_’);
PDUcontext.put (header,value); }}

void Message_Body():

{ bytel] data; }

{ data = byte_array()

{ PDUcontext.put("content",data); }}

syntax description file proper to JavaCC. Table [] presents the description of
the HTTP protocol. It defines the structure of the HTTP PDUs and couples
the parser and reassembler with the GateScript engine by means of the PDU
context. The header attributes become available for scripts in variables whose
names are HTTP attributes (because of compatibility problems with Java, we
replace dash with underscore, for example, the Content-Type header attribute
is represented by the $http.content type variable).
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5 Evaluation

We have experimented with GateScript by implementing active applications en-
hancing the behavior of several protocols: an active gateway for HT'TP that
scans the HTTP traffic on behalf of a user and performs customization (filtering
out ad banners, reducing image size), a multiplexer of the X Window protocol
able to replicate a window of a remote application on different X displays, a
SIP gateway that performs user defined actions on SIP INVITE messages, an
MPEG adaptation gateway that monitors the RTCP reports to detect degrad-
ing reception conditions and transcode MPEG to H.263, and a snooping wireless
adaptation gateway that acts at the IP and TCP layers in a 802.11 WLAN cell
to provide statistical QoS by limiting the rate of TCP flows through modification
of the announced window size.

Although the best performance was not our primary goal, we wanted to obtain
a first evaluation to see if the overhead of GateScript is not too prohibitive
compared to standard gateways. Therefore we separated GateScript from GAG
and evaluated them independently. We have measured the performance of a
HTTP gateway programmed using GateScript on a 1.06 GHz Pentium III PC
with 248 MB RAM running Windows XP and compared with the performance of
Muffin [T5], a public Java HTTP proxy. In this experiment, our gateway operated
as a proxy without the packet matching kernel: all packets go through a user
process running GateScript engine. Both tested tools are entirely developed in
Java and executed with Java 2 SDK 1.4.1.
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Fig. 2. Performance of Gatescript vs. Muffin, image elimination
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Fig. 3. Performance of passing packets to the user space

In the test, we have downloaded pages from a popular Web server through
the gateways that processed HTTP Replies: each page has been analyzed and
all images have been filtered out. Figure 2 compares the download delay for the
GateScript gateway and Muffin in function of different page sizes. We can see
that the overall performance in terms of delay remains comparable.

To evaluate the GAG implementation on Linux, we have measured the per-
formance of packet forwarding and passing them to the user space on a 800 MHz
Pentium III PC with 128 MB RAM running Red Hat 7.2. Figure [ presents the
delay of packet forwarding in function of the packet size for two cases: in the
first one, packets enters the kernel and they are just forwarded to the destination
(no active application installed); in the second case, a packet filter is installed
to intercept packets and pass them to an active application (active flow - ac-
tive application installed). It does not perform any processing and just re-injects
packets into the kernel for further forwarding. The difference between the two
curves represents the overhead of passing a packet to the user space. These re-
sults show that when an active application does not install a packet filter, data
flows do not incur any performance penalty. We can also see from the figure
that in the second case the overhead has only impact on data flows on which
active applications need to perform useful processing: the delay for a passive
flow (the flow for which packets are not intercepted by its packet filter) stays
small even if the packets of an active flow are processed by the associated active
application.
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5.1 Limitations of the Prototype

At the moment only one script can access a packet. We have not dealt with mul-
tiple scripts processing the same packet yet—this requires solving the problem
of the processing order, defining allowed operations on the packet, and eventual
communication between scripts.

We currently use only one protocol parser per script. It is fairly easy to increase
their number if they are of the same nature, e.g. two bit-oriented or two text-
oriented protocols. However, coupling Flavor parsers with those generated by
JavaCC is more difficult and needs more work.

At the current stage, GateScript does not automatically handle a PDU split
over multiple packets, e.g. a HI'TP Reply containing a large image. If really
needed, it can be done by programming a function that keep state between two
packet arrivals: it can store packets with fragments, reorder them if needed, and
finally process the whole PDU.

6 Related Work

Research in active networking has brought in several platforms supporting active
applications and services. Many of them use full-fledged programming languages
such as Java ([818]), C ([5I21]), or TCL [I]. However, as said previously, we think
that a specialized scripting language with automatic parsing of PDU fields like
GateScript provides a more flexible tool for programming active gateways. As to
Java, we consider it as an excellent language for developing GateScript internal
functions, but we do not need all its complexity to program active applications,
in which for example, the programmer would have to deal with exceptions and
all Java keywords.

There are several other specialized languages for active networking platforms.
PLAN [10] and GateScript have different objectives: PLAN is a language for
programming active packets while GateScript is used for programming active
applications that process regular (passive) packets in a transparent way.

Netscript [23] is a connector-oriented language for composing active appli-
cations from smaller components called Netscript boxes. The main difference
between Netscript and GateScript is that Netscript is suitable for composing ex-
tensible routers with dynamic protocol stacks, while GateScript is mainly used
to customize a flow at a given protocol layer without cumbersome interpretation
of the incoming data and encoding the outgoing data.

Unlike several existing platforms that require developing kernel modules or
plugins [TI3IT4], we place custom processing in the user space. Other platforms
such as ALAN [§] or AS1 [I] have adopted a similar goal, but they provide
support for active services working mostly at the application layer. The Gate-
Script support for packet processing in the user space does not limit the scope
of programmability to application layer protocols—it can deal with packets of
any layer ranging from network to application.

Adaptation proxies have been extensively studied in the context of
HTTP and content distribution. CacheL is a language that enables creating
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customizable caching policies based on different cache events and a set of prede-
fined actions [3]. The Open Pluggable Edge Services (OPES) [20] IETF working
group is defining an architecture that allows services to operate on application
data when they transit across an intermediate node (a proxy or a surrogate
server). In some sense, OPES devices (intermediaries supporting the OPES ar-
chitecture) are programmable by means of a rule language that may depend on
some protocol properties such as HT'TP headers.

Several content adaptation proxies have been developed for image or video
transcoding for wireless clients [TU7J9J4122]. However, most of them are fixed in
the sense that their functionalities cannot be dynamically extended nor custom-
ized—they are only configurable, but not programmable.

The programmable video gateway [19] uses a scripting language to program a
video gateway. The focus here is on the video data only and not on the protocol
data structures. By integrating a parser of a given protocol, GateScript can deal
with data packets not only at the application layer.

7 Conclusion

In this paper, we have presented GAG, a generic active gateway that supports
GateScript, a scripting language for easy programming of custom processing on
data packets. Unlike other active networking platforms it is

— generic and easy to use: we automatically create a PDU parser and reassem-
bler for the protocol that needs to be enhanced with custom processing, and
provide useful functions to operate on the content of PDUs; in this way,
the programmer may focus on PDU processing and not on cumbersome and
error prone interpretation of incoming data packets.

— reactive: in addition to custom processing of packets, active applications are
able to react to the state of the environment: they can receive events from
monitors and test variables reflecting the state of the environment;

— flexible: GateScript allows processing at different protocol layers ranging from
network to application levels.

GateScript makes the development of active applications fairly easy within
the grasp of a user not familiar with expert network programming. Our ex-
amples show that even complex problems such as snooping TCP can be easily
programmed in GateScript.

GateScript can be especially useful for creating personal communication gate-
ways on mobile computers. In this case, we place the active gateway on a mobile
host so that standard applications may benefit from network customization of
flows entering the host. The user can easily specify the behavior of the gateway
by injecting scripts into the GateScript engine. In this way, we can handle con-
figuration modifications while the host changes the point of attachment to the
global network. We plan to experiment with GateScript to develop such personal
communication gateways.
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We also need to get more insight into the performance of our prototype and

its ability to handle an increasing number of flows, packet filters, and active
applications.
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Appendix
GateScriptProgram = Statements
Statements = ([static] Statement ‘¢;’’)x*
Statement = AssignStatement

| IfStatement

| FunctionStatement
AssignStatement = "set" Variable Expression
IfStatement = ‘‘if’’ Expression ‘‘then’’
Statements [ElseStatement] ‘‘endif’’
ElseStatement = ‘‘else’’ Statements
OnEventStatement =‘‘onEvent’’ Expression °‘then’’

Statements ‘‘endEvent’’
FunctionStatement = FunctionName (Expression)*
Expression = ConstantValue

| ““$¢‘Variable

| Expression BinOp Expression

| UnOp Expression

| ““[“¢ FunctionStatement ‘‘]¢°¢
| ¢¢(‘¢ Expression ‘¢)°’’

Variable = Identifier

FunctionName = Identifier

Identifier = Letter (Letter | Digit)x*
ConstantValue = Boolean | String | Integer |

Real | Character
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BinOp

UnOp
Boolean
String

Integer
Real
Fraction
Exponent

Digit
Letter

= ¢4 | [ | Clxr | tr/;)
| Ce<o | feg=20 | Cl=2o | C1=d
| <> | =00
| ““and’’ | ‘‘or’’ | ‘‘contains’’
CC_5r) I “+)’ | “!)’
‘‘true’’ | ‘‘false’’

ctnyo (~[¢(ll))’¢(\{¢’¢(\n¢(,
((\rt(’u[u’u]u])* cenyo

Digit (Digit)*

Integer [Fraction] [Exponent]
€¢.?? Integer

(:(e;) | z(E;)) [z(+;) | :(_;)]
Integer

[IlOIl_Ilgll]

[Ilall_llzll IlAIl_IlZIl] I non



Management and Performance of Virtual and Execution
Environments in FAIN

Thomas Becker', Lawrence Cheng?, Spyros Denazis’, Dusan Gabrijelcic®,
Alex Galisz, George Karetsos® , and Antonis Lazanakis®

! Fraunhofer Institute for Open Communication Systems FOKUS, Germany
becker@fokus.fhg.de
? University College London, United Kingdom
{l.cheng,a.galis}@ee.ucl.ac.uk
3 Hitachi Europe Ltd., Hitachi Sophia Antipolis, France
spyros.denazis@hitachi-eu.com
* Jozef Stefan Institute, Laboratory for Open Systems and Networks, Slovenia
dusan@e5.ijs.si
> National Technical University of Athens, Greece

{laz,gkaret}@telecom.ntua.gr

Abstract. Next generation network nodes are required to function within
heterogeneous network environments, where new services and protocols are
rapidly deployed on demand. In such emerging environments, traditional node
architectures that offer a predetermined and preloaded set of services, are
increasingly incapable of coping with these new requirements. Accordingly,
there is a need for new node architectures that offer higher degrees of flexibility
measured by their capability to extend the functionality of the node and change
its behaviour on demand. This paper makes use of programmable and active
network technologies as developed during the FAIN project’, to present a novel
secure active node architecture, called the FAIN node architecture, capable of
supporting virtual environments (VEs) for the allocation of the required amount
of resources in which new services are dynamically deployed together with
their entire execution environments (EEs). To this end, multiple VEs and
services run simultaneously and interact securely with the node resources and
mechanisms through open interfaces and the FAIN node management
framework. We also present the implementation of the FAIN node architecture
and two case studies that demonstrate its extensibility aspects and novel
features.

1 Introduction

One of the biggest obstacles faced by the networking industry today is the difficulty
traditional network nodes and management stations have, in coping with increasing
degrees of heterogeneity. This heterogeneity is manifested in the form of different
types of networks, i.e. access, edge or core, hardware and software technologies, and

" The FAIN project is partially funded by the Commission of the European Union as IST
project 10561 (www.ist-fain.org).

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 21434]2007.
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protocols. Accordingly, the goal for rapid and autonomous service creation, deployment,
activation and management becomes even more elusive, with detrimental effects on the
operator’s and service providers’ revenues and on their willingness to upgrade their
infrastructures and support innovation. Equally important is the type of heterogeneity
generated by the different communities of users and their varying requirements. Services
designed and engineered to address the needs of these communities place different and,
most notably, conflicting demands on the use of network resources, the degree of quality
of service, the levels of security etc. Furthermore, these services must coexist with each
other and evolve as their corresponding user communities evolve.

Dealing with these different types of heterogeneity is a complex problem. Its
solution calls for services that are free to choose the software technology that is best
suited for the needs thereof and deployed at strategic places in the network for higher
performance and scalability gains. In contrast, networks must be capable of hosting
such technologies, sharing and allowing the open control of their resources by a
multitude of services. They must also provide the means of extending and updating
their functionality on demand, thereby adapting their behaviour according to real time
service/application requirements in present and future. Similar solutions are advocated
by emerging hardware technologies such as network processors [1], research initiatives
such as active and programmable networks [2][3][4][5] and standardisation efforts
such as IETF ForCES [6] and IEEE P1520 [7][8].

In this paper, we attempt to provide an elaborate answer to the question about the
characteristics and features of the next generation network architectures that support
the aforementioned network capabilities. Central to such network architectures is the
network node architecture the detailed description of which is used in order to
demonstrate how such design goals have been met. Section 2 starts with a summary of
the main concepts of the FAIN project [19]. In section 3, we present the FAIN node
architecture with its major architectural components, namely, the VE management
framework, the Resource Control Framework, the Demultiplexing/Multiplexing
system, and the Security system. In section 4, we describe the implementation of
different types of EEs on FAIN nodes. Next, we outline two case studies built as part
of the FAIN project with initial performance measurements. In section 6, we contrast
FAIN concepts and innovation with related work from the state of the art. Finally, our
conclusions and future work are given in section 7.

2 FAIN Overview

The FAIN node architecture heavily draws on the FAIN reference architecture and the
two main concepts of the FAIN project, namely, the Virtual Environment (VE) and
the component based EE (a particular type of EE). A detailed description may be
found in [9][10]. The FAIN reference architecture proposes a node that supports the
partitioning of its resources assigned to VEs. VEs act as containers in which multiple
EEs may be deployed. In turn, EEs act as hosts to the services running in them, and
consuming resources allocated to VEs. EEs also represent different implementations
(technologies), implying that services must be implemented in the same technology as
the EE, e.g. Java EE, in order to be deployed in the EE. Services may be distributed
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across different EEs, which, in turn, may be interconnected with each other. The
interconnected EEs may reside in different operational planes, namely, control,
management and transport. This approach has also been recently adopted by the
ForCES model [11]. Finally, access to node resources and services is achieved through
open interfaces [12], which act as an interoperability layer among the different
implementations.

The FAIN node provides additional support for the component-based type of EE,
being one of the most flexible programming environments for service deployment. Its
existence implies that services must be designed and developed along the lines of the
component-based approach in order to exploit the EE’s capabilities. According to this
approach, complex services are composed of simpler ones, which are then connected
together to form specific structures representative of the service. In this way, services
become extensible, their lifecycle management is simplified, and they can be readily
introduced in the network. VEs are part of a virtual network owned by a provider. The
provider uses the virtual network and consequently the VEs to deploy customer
services and control the allocated resources according to its policies. As services may
require the presence of specific EEs, these EEs must also be deployed. Each node
must then make sure that the allocated resources are solely used by the owner of the
virtual network and charged only to the appropriate services running in it. In other
words, a VE provides a place where services together with their execution
environments may be instantiated and used by a community of users or groups of
applications while remaining isolated from others residing in different VEs. In the
next section we describe the FAIN node architecture specified according to these
design principles.

3 FAIN Node Architecture

Fig. 1 depicts the FAIN node architecture with its major components, and its
interaction with the management node that includes the Active Service Provisioning
(ASP) and Policy Based Management System (PBNM) [13]. When the FAIN node
boots up, a Privileged VE (pVE), with its VE manager (VEM) component, is

::: ::: | ASP
"lal
L+
SEC _”_ RCF VEM
\\\H\

™~
UF PBNM
De/MUX

Node OS Privilege VE

Management
FAIN Active Node Node

Fig. 1. FAIN active node architecture and its components
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automatically instantiated. The VE manager implements the VE management
framework that offers access to a number of node services necessary to configure,
setup and manage the node. Four major operations may be carried out: a) deployment
and instantiation of VEs, b) deployment and instantiation of a number of EEs, c)
deployment, instantiation and interconnection of service components with an EE, and
d) control and management of a service component or a resource by means of open
interfaces, leading to the interconnection of EEs residing in different operational
planes (see Fig. 1). The VEM interacts with the Security component that offers a set
of security services and enforces node policies, the Resource control component
responsible for implementing the FAIN resource control framework (RCF) and the
demultiplexing/multiplexing component which is configured to deliver packets to the
right VE and EE when the latter has been deployed. In the subsequent sections, we
describe each one of these components.

3.1 The FAIN VE Management Framework

The purpose of the VE management framework is to manage virtual environments
and their allocated resources as well as the services installed therein. According to
this framework, services and resources are both represented as components, which all
offer a specific set of ports. Ports are used to inter-connect components and to make a
component’s particular functionality available to the outside. In the case of a resource
component, it also represents a certain share of the available computation, storage, or
communication capacity of the node. Components may be combined in various
formations creating in this way more complex resources and services from simpler
ones.

i Service, Com ponenl—l

{ Resourceg Com ponenl—,

generic types

Basic Component

Conligurable*c omponent

Service, M gr. Component Mgr. Template Mgr.

Resource, Mgr. Resource Mgr.

EVE Magr. ChannelMgr. Traffic Mgr. Channel Traffic Share

EEx Mgr. EEy Mgr. Security Mgr. VE EE, .

Fig. 2. Inheritance Hierarchy of Component Types

Fig. 2 depicts the inheritance hierarchy of the component model. At the root of the
hierarchy of component types we find the Basic Component. It abstracts common
functionality necessary for every type of component such as, discovery of the ports
provided by the component, access control to ports based on policies defined in an
individual security context, unique identification, and defined ownership. The
Configurable Component adds to this the possibility to get and set the current internal
configuration of the component in the form of a list of name-value pairs. It also offers
operations to set up and manage connections between its own ports and the ports of
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other components. Using these operations of the Configurable Component, one can
create services out of a set of available components by interconnecting and configuring
them appropriately.

Components of a certain type need to be discovered, instantiated, linked with other
components, and deleted when not in use. This is the job of the Component Manager.
Since components may represent resources in the node we have extended the
component manager with the Resource Manager that manages resources according to
their allocated resource quotas. These resource instances represent a certain resource
share for which the current usage can be monitored and callbacks can be registered
for notifications when specific thresholds are reached.

As mentioned earlier, resources are allocated to specific VEs and services are
deployed together with their entire EEs within VEs. Accordingly, the component
model has been enhanced with a number of specific component types and managers in
order to adhere to the FAIN design principles. They consist of management of VEs
and EEs, security, traffic, and packet dispatching. More specifically, the VE Manager
is acting as a factory and finder for VEs. It will allocate requested resource shares
using other basic managers during the creation of a new VE and monitor the overall
resource usage during its lifetime. Various technology specific EE Managers take
care of the management of EEs providing the runtime environments for component
instances, e.g. a Java virtual machine. The Channel Manager is used to create
channels which forward packets from the network to connected component instances
based on a set of rules and also send packets coming from component instances to the
network. The Traffic Manager partitions the node’s available bandwidth into shares
and allows to assign packet flows to them. The Security Manager is used to set up and
manage the individual security contexts which are assigned to each component
instance during its creation and used to control the access to the instance’s ports.

After the creation of the requested resource shares the VE Manager will attach
them to the new VE so they are available to service components which will be
installed and instantiated inside the VE later. In order to install components we
introduced the notion of a Template Manager. A template is identified by a name and
a version number and includes a particular implementation of a component type
together with its corresponding component manager type. Both VEs and EEs are
Template Managers and thus support the installation and management of component
types. While an EE provides a concrete technology dependent runtime environment
for component instances the VE abstracts from this. During the installation of a
template the VE will try to find an appropriate EE in the list of attached EEs and
forward the installation request to the EE. The EE is then responsible to carry out the
technology dependent steps to make the new component type available.

The generic component framework serves as a starting point for new services or
resource abstractions (see upper left part of Fig. 2). A developer would implement
specific component types by deriving from the basic or configurable component types
and simply add the implementation for the service specific ports, if any. For service
components the developer would derive a manager type from the generic component
manager type while for resource components the resource manager type would
be used.
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3.2 The FAIN Resource Control Framework (RCF), Demultiplexor
(De/MUX), and Security

In the design of the FAIN node, major attention was given to the management of the
node resources and their sharing among the various users of the node. The part of the
node responsible for this task is called Resource Control Framework (RCF). An
overview of the RCF is given here. Detail descriptions of the RCF can be found at
[30][32]. The RCF is considered very important as it supports one of the major design
goals of the FAIN project: the partitioning of resources (capacities) among VEs and
their residing services. Through resource partitioning, supported by the RCF, the
various VEs are kept isolated from each other and allowed to consume only the
allocated amount of resources. In a similar manner, VEs are enabled to further allocate,
manage and control their own (virtual) resources according to the VE’s own policies
and logic, customised according to the type of services that are running in them.

As a FAIN node supports multiple VEs with multiple EEs running in them, arriving
packets must be delivered in a secure way to the right entity inside the node. The
functional entity responsible for delivering packets is the Demultiplexing/Multiplexing
(De/MUX) component. An overview of the De/MUX architecture is presented here.
For details readers should refer to [30][31]. The design of the De/MUX is also
influenced by and built according to the component model principles, thereby making
use of the VE management framework and its abstractions. The main components of
the De/MUX are the Channel Manager and the Channel components. The Channel
Manager is responsible for creating and deleting the Channel object. The Channel
object is created for each VE. The specific types of Channels correspond to different
types of flow packets arriving at the node: namely active and non-active (data) packets
but these may be extended to new types of packets by introducing new Channels and
deploying them through the VE management framework mechanisms. Furthermore,
the De/MUX also interfaces with the Security architecture, which provides a safety
framework to protect against unauthorised active packet processing. When the Channel
Manager receives the active packets, it calls a security interface to execute security
check, the result of which determines whether the Channel Manager forwards or
discards the active packets. For outgoing active packets, the Channel Manager calls the
security interface to insert security information into them, used for executing the
security checks at the next active node.

Active networking raises a number of different security issues, and FAIN designed
and implemented a complete security architecture to address these issues. As this
security architecture is thoroughly explained by another paper [27] we only discuss
here the functionality and aspects relevant to the VE management framework. To this
end, we distinguish between two different categories of facilities the security
functionality offers: a) Communication security facilities are set of services, protocols
and mechanisms that provide at system level data origin authentication and integrity
services for packets exchanged in between nodes. Combination of per hop protection,
which uses symmetric cryptography, and protection regarding the originator, which
uses asymmetric cryptography, were used to protect active packets data tackling the
issue that parts of the packets (i.e. the packets’ payload) may be changed in the
network, whilst certain parts of the packets (i.e. static executable codes) should
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remain unmodified; b) System security facilities are set of services and mechanisms
that provide authorization and policy enforcement on a node, system integrity, code
verification and accountability of system operation.

4 EE Implementation

The implementations of EEs may differ in the employed technology and the way
deployed service components are executed. Two different types of EE were
implemented in FAIN: a) the Java EE, and b) the Active SNMP EE. The Java EE type is
used for the installation and execution of components implemented in Java. It also
serves as the EE for the node’s management layer described in section 3.1. For the
management of templates (i.e. component types) a Java class loader is employed. At the
operating system level, the Java EE is mapped as a separate process executing a Java
virtual machine (JVM) charged to the VE it belongs to. The CPU and memory usage of
all Java EE processes are monitored by the Java EE manager and will be temporarily
suspended when the previously agreed resources are overused for a certain amount of
time. Although the underlying component model allows connections between
component ports using arbitrary protocols, the Java EE implements component ports as
CORBA interfaces. Consequently, the communication inside the management layer is
based on CORBA. The enforcement of access control policies for those ports is realised
with CORBA portable object adaptors and interceptors interacting closely with the
respective  component’s security context. The implementation of access control
enforcement also supports delegation so that a chain of calls via a series of interfaces
can be checked against policies. The Active SNMP EE [14][17][29] extends the
functionality of Safe and Nimble Active Packet (SNAP) active packet protocol [15]
through exploitation of the SNMP protocol. SNAP packets essential contain a series of
byte code instructions. It is claimed to be light-weight, efficient, safe and practical. The
discussion of SNAP is beyond the scope of this paper. For details of SNAP, readers
should refer to [15]. It is a management EE we have built in FAIN and is used in the
Diffserv scenario presented in the next section and in [30]. Other examples of
management EE are for instance the Smart Environment for Network Control,
Monitoring and Management (SENCOMM) [33]. The FAIN management EE consists
of two components: a) the SNAP Activator: consisting of the SNAP Sender/Receiver
and the snapd (snap daemon), and b) the ANEP-SNAP Packet Engine (ASPE). The
SNAP Sender is responsible for generating SNAP packets and injecting them into the
network. The snapd is extended to include SNMP functionalities and is responsible for
the execution of SNAP active packets. The ASPE is responsible for providing ANEP
encapsulation/de-encapsulation for SNAP packets, and co-ordinates Active SNMP EE
operations with De/MUX and SEC for transmitting active packets and for securing
active packets during-transit across the network, respectively [14][17].

5 Case Studies

The Diffserv scenario [16][30] demonstrates the deployment of heterogeneous
technologies (EEs) on different planes (i.e. control / management planes) for enhancing



28 T. Becker et al.

flexibility and extensibility in the FAIN architecture; this is demonstrated through the
co-existence of multiple heterogeneous EEs within a VE, and subsequently a generic
approach for inter-EE communications. In addition, the dynamic deployment of service
components (i.e. a DiffservController) within an EE to support new services through
interactions between various FAIN components was also demonstrated. The full
Diffserv scenario was presented in [30]. The WebTV scenario was proposed in order to
demonstrate the deployment of a service component together with its corresponding
EE. According to it, a WebTV Service Provider requests the creation of a VE in order
to use the node resources for transmitting video to his customers. A new customer that
wants to get this service is not capable of receiving the stream in the transmitting
format. For this reason the Service Provider (SP) dynamically downloads to a nearby
node a service component in the form of a transcoder that is compatible with the
customer’s system. This component adheres to the definition of the component model
which makes it possible to seamlessly deploy it using the VEM. The service
component is instantiated in a Java EE and the flow is rerouted to be processed by
the new component [13] [16], which sends the TV stream in the correct format.
In contrast with the Diffserv scenario, the WebTV scenario deploys an EE in the
transport plane wherein packet receive additional processing through the newly
deployed service component. This component may be further configured e.g. changing
the value of the transcoder to a new one, by another EE that resides in the control or
management plane.

5.1 Performance Trials

Performance trails for the Diffserv scenario were carried out with the objective of
evaluating the viability of the features of the FAIN active node; namely the VEM
bootup time (i.e. node instantiation time and manager installation time), and service
deployment time. A PC with an Intel 746MHz Pentium III CPU and 512MB memory
was used to measure the VEM bootup time. Note that the bootup sequence of VEM
on a FAIN active node involves two steps: node initialisation and managers
installation. The average total time for node initialisation is 313.8 ms. This is the
average time to initialise an ORB (4.6 ms), a pEE (94.1 ms) and a pVE (165.2 ms).
The average manager installation time for installing the VE manager is 389.6 ms, 72
ms for the Java EE manager, 2146.5 ms for the channel manager, 76.7 ms for SEC
manager, 75.9 ms for traffic manager, 23.1 ms for Diffserv manager, 28 ms for Active
SNMP EE manager. An addition 6.1 ms for finishing the boot sequence. Thus the
average total time for booting up VEM on a FAIN active node is 3031.9 ms. Note that
different times for installing different managers mainly depend on the individual size
and numbers of classes to be loaded. The channel manager also has to load an
external library for connecting to Linux netfilter. For service deployment performance
measurement, a PC with an Intel 995MHz Pentium III CPU and 112MB RAM was
used. The average active packet processing time in the Active SNMP EE is 19.3 ms.
Note that in a real-life scenario, the VEM is expected to be brought up once only
when a FAIN active node boots up. Consequently, a service EE deployed in a VE is
brought up only when there is a new service request. Thus neither node instantiation
nor manager installation is frequent. Moreover, VEM will operate for a long period of
time commensurate with the lifetime of the SP virtual network. Although service
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(i.e. EE) deployment is comparatively more frequent, it should be noted that dynamic
service creation on networks through service EE deployment is much more efficient
than manually configuring each node to enable new services. Given that the enhanced
level of flexibility of the FAIN active node architecture, the results of these feasibility
trials are encouraging, and are proving the feasibility of deploying FAIN active nodes
in a real network.

Another test was run in order to get an assessment of the scalability of the Java
based EE and thus the implementation of the FAIN active node’s management layer.
For this test a PC with an Intel 746MHz Pentium III CPU and 512MB was used. After
the boot-up of the privileged VE eight separate VEs with attached Java EEs were
created (average of 8 seconds per VE/Java EE). Using a local test client a Java based
test service was installed in each of the eight VEs (average of 366 milliseconds per
installation) and for each VE 1000 instances were created and configured. As an
example for user-space packet processing the test service connects itself to the
respective VE’s packet dispatching channel during configuration which requires also
interaction with the privileged VE where the dispatching channels are managed. For
the test security was enabled, i.e. the communication between the test client, the
privileged VE and the particular VE was secured and access to the involved
components was controlled by the security manager. Fig. 3 shows the times in
milliseconds for the creation and configuration of instances versus the number of
instances for each VE. For the first few instances the minimal time is decreasing due
to already loaded classes in the Java EEs. After that the average time is increasing
constantly with the number of instances already created. The sporadic peaks are most
probably due to garbage collection inside the Java EEs. The average time for service
creation is still below 500 milliseconds for 1000 service instances per VE.
Considering the non-trivial service configuration which requires interaction with the
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Fig. 3. Service creation in 8 VEs with attached Java EEs
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packet dispatcher inside the privileged VE plus the control of all interactions by the security
manager we argue that this figure is acceptable and the Java based implementation of the
FAIN active node’s management layer scales well.

6 Related Work

The definition of EEs was defined by DARPA. EEs can be treated as the runtime
environment of a process or a process itself [20], or toolkits for building active
applications (services) [18], or a programming environment characterised by the
implementation language, like Java [4] [21]. EEs have also been proposed as extensions
of the Node OS [22] whereas in [23] [24] EEs are characterised not by the choice of
technologies but rather by the services they offer and the architectural plane they
operate at, namely, control, management, and transport. In other cases, EEs are treated
as VEs acting as the principal abstraction for authentication, authorisation and resource
control [21] [22]. As a result the reference architecture proposed in [21] makes it very
difficult to support inter-EE communication either within the same node or in different
ones. All this ambiguity has an impact on defining a systematic approach around a
consistent model that facilitates the dynamic deployment of new services taking into
consideration the de-facto heterogeneity found in the network in the form of hardware
and software technologies, protocols etc

In contrast, FAIN attempted to deal with the problem of service deployment in
heterogeneous networks by defining a reference architecture [9] based on a clear
separation between VEs and EEs. Another approach to isolating active services from
each other was described in [34], [35], [36].To this end, we have used the same
approach in defining and using VEs as in [12], while EEs are distinguished between
EE type (the programming environment and programming methodology) and EE
instance (the specific implementation of the EE type) [9]. The benefit of using these
two concepts as distinct entities enables us to build virtual networks that are service
specific (e.g. service overlays). The VE abstraction allows for the allocation, control
and charging of resources whereas EEs allows us to deploy services in nodes together
with the whole implementation environment. We have demonstrated this in the
Diffserv scenario where we deployed a Java control EE and a management EE using
SNMP and SNAP (the latter was developed by the Switchware team). In the same
way, using the VEM framework other EEs developed by third parties, e.g. ANTS may
be deployed and combined with EEs already present in the node. Note that during the
ANEP encapsulation process at the ASPE, static contents of a SNAP packet program
(e.g. the byte codes) are determined by the ASPE and are encapsulated into ANEP
Payload. The entire SNAP packet program (which includes both the static and the
dynamic contents of SNAP) is kept in one of the ANEP Option fields. The static
contents of SNAP packet can be easily determined since SNAP clearly defines its
static contents to be its byte codes stored on its stack. The static contents of SNAP
packet that are kept in ANEP Payload are protected by a signature related to the
principal. The signing process is performed at SEC. Note that ASPE is independent of
SEC. ASPE is in fact developed as part of the SNAP package. Integrating ASPE into
the SNAP package is currently undergoing. It is the responsible for the ASPE to
recognised the packet format of SNAP and to determine which parts of the SNAP
packet are static. Whereas the ANEP Option that keeps the SNAP packet program
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(which includes both the static and dynamic contents of SNAP) is protected by hop
protection again at SEC. Symmetric cryptography techniques are used for hop-
protection, a solution that is similar to deploying the Authentication Header in IPSec
[16] [17] in a per-hop fashion. The advantage of keeping the entire SNAP packet in an
ANEP Option is that no packet marshalling at the Active SNMP EE is needed: the
entire SNAP packet is put into the ANEP Option. This is in contrast with existing
authentication methods such as SANTS (Secure ANTS) [28] where static and dynamic
contents of an active packet are actually splir and encapsulated into corresponding
ANERP fields. When encapsulating ANTS packets in ANEP in the SANTS approach, it
was said that “The variable area of our (ANEP) packet includes the variable fields of
the EE header (of ANTS) and the variable portions of the data payload (of ANTS)”
[28]. This implies certain (variable) parts of ANTS packets must be extracted and
placed in the variable area of ANEP packet. This incurs overhead on packet
marshalling at each node. By avoiding packet splitting the overall efficiency of the
security processing on FAIN architecture is improved. Also, unlike the SANTS
approach in which a modified ANEP format is used to keep active packets, the
standard ANEP format is used in FAIN to avoid interoperability problems. Full
explanation on the functionalities of the ASPE can be found in [17] [29]. The process
of integrating the ASPE functionalities into the SNAP package is currently undergoing.

The component-based approach heavily draws on the Netscript and the IEEE
P1520. We have generalised it to treat also node resources as components that can
dynamically be deployed upon request and accessed via open control interfaces.
These control interfaces may be instantiated on demand in any EE irrespective of its
implementation. In this way services are enabled to control their allocated resources
from their specific implementation environment.

In FAIN we have also built a high-performance EE [25] residing in the Linux
kernel-space in order to deploy service components with time restrictions. This EE is
deployed using the same toolset offered by VEM and controlled by control EEs
implemented in Java residing in the user-space. Furthermore, we have used the
reference model of the architecture to automate the process of service provisioning in
the network. This is achieved through the network Active Service Provisioning
system [26] which uses VEM to enforce the deployment decisions taken at the
network level.

7 Conclusion

In this paper we have presented the FAIN Active Node architecture, capable of
combining and coordinating different Execution Environments that represent different
technologies which are then used to host service components and interact with each
other as part of the overall service operation. To this end, the FAIN node may change
or extend its functionality and seamlessly operate in a heterogeneous network. This
has been achieved through the definition of the VE management framework that
combines EEs, VEs, and service components.

The VE management framework is realised through a number of classes with
methods that allow EEs to be deployed in VEs, in turn, service components to be
deployed and linked with existing services in EEs, and exports control interfaces of
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these components for their configuration. The operation of the EEs, and of the
services running in them, is regulated by the FAIN resource control framework. This
framework is based on the VE abstraction, which is used as a principal for accounting
and resource allocation and partition. Moreover, all the operations take place in a
secure environment founded on the flexible FAIN security architecture, which
provides authentication, authorisation of the use of resources and verification of
packets. The FAIN node architecture and its components have been implemented, and
a number of different EEs residing in different operational planes and interworking
with each other have been created. Their functionality and mechanisms achieve the
design goals. The JavaEE, residing in the management plane, binds together all the
FAIN node components as well as the other EEs. Finally, the flexibility of the FAIN
node and its new features has been demonstrated through two case studies, namely,
Diffserv and WebTV deployment.
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Abstract. Concast is a customizable many-to-one network-layer communication
service. Although programmable services like concast can improve the efficiency
of group applications, accompanying security concerns must be addressed be-
fore they are likely to be deployed. The problem of securing such services is
interesting because conventional end-to-end security mechanisms are not appli-
cable when messages are processed inside the network, and also because of the
potential for interaction among the various policies involved. In this paper we
describe our implementation of a secure concast service, which leverages exist-
ing network-level security mechanisms (IPsec) to provide secure distribution of
program code (merge specifications) as well as authentication of participating
nodes. We describe the various policies supported, how they interact, and how
our approach provides security against various attacks.

1 Introduction

The design of the Internet protocols has produced a remarkably flexible, robust, and
scalable system. Perhaps nowhere is the end-to-end design principle more evident than
in the area of security, where the best services and solutions are universally considered
to be those that are closest to the application. Over time, however, a number of network
services have appeared that involve, in one way or another, processing that occurs in
the shared infrastructure, away from the end systems on which the applications reside.
Many of these services depend on the ability to look beyond the information needed for
traditional forwarding (i.e. the packet header), into the packet payload. In some cases,
this processing is performed on the application’s behalf during forwarding [[1I2)3144516].

The problem of securing applications that rely on this type of processinﬂ is inter-
esting because the conventional end-to-end security solutions preclude processing that
occurs apart from the endpoints, and thus are incompatible with such applications. In
addition, reliance on the infrastructure to perform processing on behalf of the applica-
tion implies the existence of multiple policies that need to be enforced.

The concast service is a good example of a service that performs processing on
the applications behalf during forwarding. Concast is a many-to-one communication
service that can be viewed as a companion service to multicast (i.e., the inverse of one-
to-many communication). In concast, multiple senders transmit data packets towards

* Authors are listed in alphabetical order.
! As opposed to securing applications against involuntary processing in the infrastructure.

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 35453,12007.
(© IFIP International Federation for Information Processing 2007
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a single receiver which results in a single packet, containing the combined (merged)
data from the multiple senders, being delivered to the receiver. Because the merging
operation is application-dependent, concast allows end systems to define the merge pro-
cessing that is applied at internal network nodes. The benefit of concast is in reducing
the limiting factor on the scalability: from the total number of senders to the branching
factor at any node.

In this paper we consider the problem of securing scalable infrastructure-based ser-
vices, in particular the problem of creating a secure concast service. We outline a set
of security requirements for such services, and identify the relevant policies and trust
relationships involved. We then describe a new security approach based on the fun-
damental idea that the control plane can be secured using conventional point-to-point
security techniques for authentication, confidentiality, and integrity. Given a secure con-
trol plane, the responsibility for end-to-end security can then be distributed among the
participating nodes. We describe the application of our approach to implementing a se-
cure concast service. We report performance measurements taken from our prototype
implementation of the secure concast service.

2 Security Requirements

We assume a network environment in which network services are offered to users as a
business proposition by service providers. We believe that a customizable service will
only be deployed if it offers some benefit to the service provider. We assume this benefit
takes the form of money paid to the provider in return for access to the enhanced service.
Thus our first security requirement is:

Only authorized users can take advantage of the customizable service.

We assume that users will pay for a service only if they are assured of receiving some
benefit from it. In the case of concast, the main benefit to the user is scalability through
anonymity: by moving application-specific processing into the network infrastructure,
the service hides the details of where the data is coming from and how much process-
ing is occurring. To put it another way: placing application-specific processing in the
infrastructure hides scale and complexity from the users. This leads to an additional
requirement:

The scale and complexity of the processing should not be exposed at any single
point.

As a consequence, the user must rely on the network to carry out processing ac-
cording to user-supplied specifications. On one level, this is no different than any other
network service. However, in terms of security there is of course a profound difference
between relying on the network to forward data as opposed to examining and possibly
modifying it. In the former case, end-to-end security mechanisms exist that can pro-
vide assurance that (under standard assumptions) user data is not disclosed or tampered
with. In the latter case, the users not only have to trust the network to carry out the spec-
ified processing, but also to protect the confidentiality and integrity of the application’s
data. That is, the user/application has to rely on the network infrastructure to enforce its
security policies. This brings us to the third security requirement:
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Integrity and confidentiality of application data are protected according to
user-supplied policies.

In other words, a user-supplied policy specifying the entities authorized to participate
in that instance is associated with each instance of the service.

This requirement is nontrivial for two reasons. First, because the infrastructure is a
key participant in the enhanced service, the application policy needs to cover not only
users, but also components of the infrastructure (nodes). In other words, each partici-
pant must be able to identify nodes that are not trusted to carry out processing on its
behalf, and the service provider must take steps to prevent such nodes from partici-
pating in providing service to that user. Second, and more importantly, the service is
designed so that the set of participating nodes grows incrementally, hop-by-hop toward
participating users. Participants are only aware of other participants (either users or in-
frastructure nodes) that are up to one hop away; this is a fundamental characteristic that
is required for scalability and indeed, even for practical deployment. As a consequence,
users cannot themselves ensure that only trusted nodes participate in the service; they
must rely on the infrastructure to enforce their policies on participation.

Our approach to satisfying the last two requirements is to state an invariant that is to
be maintained at all times by the service:

All participating nodes are trusted by the user to enforce user policies regard-
ing (i) processing, confidentiality and integrity of user data;, and (ii) which
nodes are trusted to participate.

In other words, we rely on (an explicit form of) transitive trust. This seems to be an
unavoidable requirement for scalable services that rely on third parties for key func-
tionality.

3 Securing a Programmable Service

The first step in securing a programmable service is establishing trust relationships
between the participating entities (senders, receivers, and network nodes).

Trust relationships can be represented as the set of principals (nodes) that are allowed
to perform certain actions (e.g., join the concast group, receive the merge specification,
or be given an encryption key). We say a policy defines the set of nodes that can perform
a certain action. For example, a concast receiver will define the list of sender nodes that
are allowed to join the group (called the join policy). At the same time, each local node
in the provider’s network will define the list of end-systems that are allowed to use
the concast service (e.g., have paid for the service). Clearly, both policies must be met
before a sender is allowed to join a concast group.

The most important policy is the one that defines the nodes that can be trusted to
enforce the policies of others. This type of transitive trust is critical for network-level
services where processing occurs hop-by-hop. Because the user’s data does not remain
encrypted end-to-end, intermediate nodes that handle the user’s data must enforce the
user’s policies on the user’s behalf. If a node cannot be trusted to enforce the user’s
policies, that node cannot be allowed to participate in the service. For example, a con-
cast receiver must rely on routers in the network to enforce the receiver’s join policy. If
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unauthorized senders were allowed to send data along the concast flow and the member-
ship check did not occur until the merged packet reached the receiver, it would be too
late. The damage (corruption of authorized sender data) would already have occurred
at intermediate nodes in the network.

The key to achieving a scalable yet secure service is the ability to incrementally add
nodes to the service such that the invariant is not violated. To initiate a secure service,
the user’s policies must be propagated, hop-by-hop through the network, checking the
integrity of each node along the path before adding them to the flow.

Note the above description assumes that policies are themselves propagated securely.
At each hop along the propagation path, the adjacent nodes must authenticate one
another and verify policy compliance before proceeding. Once authenticity and autho-
rization have been established, the policies can be sent over a confidential channel. Be-
cause the trust relationships are established hop-by-hop, existing point-to-point security
techniques can be used. In particular, protocols such as IPsec can be used to perform
both the authentication check and create the confidential tunnel over which policies can
be sent.

Once a path of trusted network hops has been established, this path can be used for
control plane messages; in particular, control messages that enable service-specific pro-
cessing at each trusted node along the path. Given a secure (programmable) control
plane, end-systems can take on the responsibility for security in the data plane, pro-
viding modules that offer as much or as little security as desired. In other words, by
supporting a secure, authenticated, hop-by-hop signaling protocol in the control plane,
applications can implement end-to-end security in the data plane, thereby maintaining
the end-to-end principle.

In the next section, we present a specific approach for implementing a secure control
plane, and show how it can be applied to the concast service. The approach is novel
in the sense that it leverages existing point-to-point secure communication protocols
(i.e., IPsec) to create a secure path and distribute policies and user-specified processing
modules. Given this basic infrastructure, end-systems then define and control security
in the data plane by programming the service appropriately.

3.1 The Concast Service

Before we describe how a secure concast service can be implemented using our
approach, we need to take a moment and briefly review the basic (non-secure) con-
cast service. Additional details of the concast service can be found in our earlier pa-
pers [7] and [1].

Concast is a many-to-one communication service that provides the symmetric in-
verse of multicast: a group of senders belonging to a concast flow transmit messages
that are merged by the network en route to a common receiver R. Like multicast, con-
cast provides a scalable abstraction: an arbitrary number of group members (senders)
are treated as a single entity by R. A concast flow is identified by its receiver R and a
group identifier G; senders “join” the flow before they begin sending.

The packets delivered to R on a concast flow are derived from the packets sent by
the group members according to a merge specification (MS) supplied by the receiving
application. The concast service allows a limited amount of network programmability,
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where the desired processing semantics are defined within the framework of a merge
specification. The merge specification defines (1) how datagrams delivered to the re-
ceiver are derived from datagrams transmitted by different senders (2) the timing of
datagram forwarding and delivery; and (3) which datagrams are combined with each
other (e.g. only packets containing the same sequence number are merged with each
other). The merge specification is supplied by the receiver at flow creation time (e.g.
in the form of bytecodes for a collection of Java classes conforming to a certain type
specification), and is executed by a merge daemon (Merged) at each network node.

Concast merge specification deployment is accomplished via the Concast Signal-
ing Protocol (CSP), implemented using a receiver-side CSP daemon (RCSPd) and a
server-side CSP daemon (SCSPd). The CSP protocol creates the flow and establishes
concast-related state, called the flow state block (FSB), in network nodes (i.e. at all
concast-capable nodes on the paths from group members to the receiver.) The flow state
block records the merge specification describing how packets are to be merged, and an
upstream neighbor list (UNL) that records the next concast-capable nodes “upstream”
(towards the senders) for this flow. The UNL is maintained using soft-state techniques
similar to RSVP [§]].
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Fig. 1. The Secure Concast Signaling Protocol

Figure[Tlshows the secure version of the CSP protocol, but the basic idea is the same
as the original CSP protocol. First, the receiver initiates the flows (step 0,1). The senders
then attempt to join the flow by Join Flow Requests (JFR) messages toward the receiver
which CSP intercepts and propagates toward the receiver as Request for Merge Spec
(RMS) messages (steps 2-8). The merge specification is then “pulled” from the receiver
towards the senders (steps 9-18).
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3.2 Securing Concast

Because the receiver is responsible for initiating the concast flow, the receiver should
also be responsible for defining the flow’s membership (i.e., join policy). As we saw ear-
lier, the policy must propagate through the network toward the senders so that routers
can decide whether a sender is allowed to join or not. Unfortunately, the concast re-
ceiver does not know (in fact never learns) the identity, or the location, of the senders.
Obviously the join policy cannot be pushed into the network toward the senders until
the location of the senders is known (i.e., the senders issue join requests).

Because senders must identify themselves before the policies can be sent out, the
secure version of the CSP protocol begins just like the original CSP protocol (see
Figure[I). A new sender issues a join request message that propagates (in the clear) to
the receiver (steps 2-8). At this point the path from the sender to the receiver is known
and the user’s join policy can be “pulled” toward the sender. This is accomplished by
creating a set of secure tunnels back to the sender (steps 9-18). The secure path is cre-
ated hop-by-hop, each time authenticating the next hop (and verifying its integrity) and
then passing it the user’s join policy and merge specification across the secure tunnel
(e.g., steps 9-12).

Because the merge specification is sent across a secure control channel and executes
on trusted nodes, the responsibility for end-to-end data path security can be placed in
the hands of the end-systems. To achieve this objective, the concast merge specification
itself implements the code for decrypting, processing, and then re-encrypting the data
packet before forwarding it on. Because the control channel is secure, the decryption
and encryption key can be distributed along with the merge specification.

3.3 Merge Framework Modifications

In addition to securing the CSP protocol (i.e., securing the control plane), changes
were also needed in the merging framework in order to support user-defined encryp-
tion/decryption in the data plane.

First, we enhanced the merge specification to carry a user-defined encryption func-
tion and decryption function as well as the secret keys to be used for encryption, de-
cryption and authentication. These may be actually byte codes, or they may be pointers
to predefined encryption and decryption functions we added into the merge framework
(MergeD). As part of the encryption specification, the framework allows the user to
specify whether a MAC (message authentication code) should be include in the en-
crypted message. If so, the MAC will be checked when the packet is decrypted to verify
its integrity.

The second change to the framework creates different forms of the merge daemon
(MergeD) to be deployed at senders, merging nodes, and the receiver. Merge daemons
executing on sender nodes receive packets over a local socket. Because these incoming
packets are unencrypted, the decryption function does not need to be invoked; only the
encryption is called, on outgoing packets. On receiver nodes the situation is reversed:
incoming packets need to be decrypted, but outgoing packets go straight to the receiver
application and do not need to be encrypted. On intermediate nodes, all incoming pack-
ets are decrypted and all outoing packets are encrypted (as long as merging is occurring,
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i.e. there is more than one upstream neighbor—otherwise, the packets are simply for-
warded). Because we trust sender nodes only to transmit data, not merge packets, the
signalling protocol transfers only a partial merge specification to the sender, containing
an encryption function and the secret key (that is, the merge routine is not passed).

4 Secure Concast Signaling Protocol

This section describes the Secure Concast Signaling Protocol, which is based on the
original Concast Signaling Protocol [[1]. Together with IPsec Secure CSP provides a
foundation for the secure concast service. We begin by defining notational conventions,
data types, and cryptographic primitives used. Next we describe the protocol messages
and their contents. Finally, we give a high-level operational description of the (normal)
process of setting up a concast flow.

4.1 Basic Types and Cryptographic Primitives
Our protocol uses the following types:

— appident: Identifier of an application-level principal, i.e. a participant in the con-
cast flow (receiver or sender). E.g., if X.509 certificates are used, this could be an
OSI Relative Distinguished Name (RDN).

— nodeident: Identifier of a network-level principal, i.e. a node. We use IP addresses
as network identifiers.

— flowspec: A pair (R, G) identifying a concast flow, where R is the receiver’s IP
address (a nodeident) and G is the group identifier.

— mergespec: A collection of data and function definitions that defines the merge
processing to be carried out by intermediate nodes, and that conforms to the re-
quirements of the concast merging framework.

— pmergespec: A partial or “thinned” mergespec, containing only the security-related
portions of the merge specification. End systems receive partial mergespecs because
they need to do security-related processing but may not be trusted to apply policies
or perform merging.

— policy: A specification of a set of principals that are authorized in some way. We
consider a policy to be a predicate on identifiers (appidents or nodeidents) and
credentials; if the predicate has the value “true” for a given identifier and credential,
it means that (i) the identified principal is authorized, and (ii) the given credential
is an acceptable witness for evaluating authenticity of information to be provided
by the principal.

— signature: A digital signature, essentially a cryptographic digest of message data
encrypted with some principal’s private key, computed and formatted according to
accepted cryptographic standards (e.g. SHA-1 [9] and PKCS #1 [10]]). The notation
{h(alblc)} denotes the result of concatenating messages or fields a, b and ¢ and
signing the digest (created using a well-known cryptographic algorithm such as
SHA-1) of the resulting bit string with private key k. Unless otherwise specified,
signature fields in messages cover the entire contents of the message preceding the
field.
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— cert: A public-key certificate, which binds an identifier (of type appident or nodei-
dent) to a public key.

— ipsecinfo: A structure containing IPsec information of a host needed by another
host to create an IPsec tunnel to the former host.

— timestamp: A timestamp.

— ccasthdr: the first field of every secure CSP message. Indicates the version of the
protocol and the type of the message.

The notation verify(m, a, c) denotes the result of verifying the authenticity and in-
tegrity of (some part of) a message m using signature a and certificate c. This function
returns true if digesting the information in m results in a value consistent with that ob-
tained by decrypting a with the public key contained in c. For brevity, we sometimes
abuse notation by indicating that the entire message m is being verified even though the
authenticator covers only a portion of it.

The notation p(u, ¢) denotes the result of applying policy p to identifier u with cre-
dential c. The value “true” means that u, presenting credential ¢, is authorized. The
notation time-check(t) denotes the result of verifying that a timestamp ¢ is within some
6 of the current time as known locally. We assume that ¢ is configured appropriately at
every node for the degree of clock synchronization achievable in the network. (As usual
when timestamps are used to ensure freshness, if ¢ is too small the protocol may fail
between nodes whose clocks are not well-synchronized; setting ¢ too large increases
the window of vulnerablility to replay attack.)

4.2 Policies and Principals

As described earler, the signaling protocol makes use of various policies. Per-flow poli-
cies are supplied by the receiver, and specify the principals—nodes and applications—
that are allowed to participate in the flow. Per-node policies are supplied by service
providers (ISPs), and specify the nodes that are allowed to perform various functions in
a flow. Per-node policies are only applied to nodeidents.

The supported policies include:

— fp.j: per-flow join policy. Specifies application entities (appidents) authorized to
join the flow. This policy is specified by the concast receiver along with the merge
specification.

— fp.u: per-flow upstream node policy. Specifies nodes (nodeidents) that are autho-
rized to participate in the flow either as host of an application-level sender or as a
merging node. This policy is specified by the concast receiver along with the merge
specification.

— np.r: per-node receiver policy. Specifies nodes (nodeidents) that are authorized to
be the terminal points of concast flows. This implies that the node is authorized
to supply merge specifications. This policy would typically characterize nodes that
either have had a fee paid on their behalf, or are part of some trusted nonlocal
domain.

— np.d: per-node downstream policy. Specifies nodes (nodeidents) that are autho-
rized to relay a merge specification from a downstream receiver.
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— np.s: per-node sender policy. Specifies the set of nodes (nodeidents) authorized to
be the source of requests to join a concast flow. Again, typically characterizes the
set of nodes in this domain that have paid for service, and nodes trusted by virtue
of the other domain to which they belong.

— np.u: per-node upstream policy. Specifies the set of nodes authorized to be upstream
of this node in a flow. Note that such nodes are trusted not only to handle (merge)
user data, but also to apply this node’s policies.

The protocol description involves the following principals and their associated infor-
mation: X is the receiver (application), which has private key kx and certificate C'x; it
is running on node R, which has private key kr and certificate Cr. Y is a sender (ap-
plication), which has private key ky-and certificate C'y. Y is running on node .S, which
has ks and Cg. Finally, N is a merging node with private key kx and certificate C .

4.3 Protocol Messages

Message contents are given in terms of the structured types shown in Figure Pl which
in turn use the basic types defined above. Note that the CREATEREQ structure contains
two signatures; the first covers the MERGETOKEN, while the second covers the same
data except that mergespec is replaced by the subset of its information that constitutes
a pmergespec. Also, the PCREATEREQ structure contains only the fields of a CRE-
ATEREQ that are relevant to the reduced mergespec, i.e. the subset of mt that constitutes
a reduced mergespec, the pMTSig, and the userCert; given a valid CREATEREQ, a
PCREATEREQ can be derived from it.

JOINREQ MERGETOKEN CREATEREQ
flowspec flowID; flowspec flowID; MERGETOKEN mt;
appident user; mergespec ms; signature MTSig;
signature usersSig; policy PFUpstreamp; signature PMTSig;
cert userCert; policy PFJoinP; cert userCert;

appident user;

Fig. 2. Structures used in concast messages
The contents of the protocol messages are shown in Figure 3l

4.4 Protocol Operation

With the help of Figure [l we describe the normal sequence of steps for a secure concast
flow establishment. In the interest of clarity we omit steps related to error processing,
and assume that the flow in question is not currently present on any node involved.

Step 0: To create a flow (R, ), the receiver application X generates the se-
cure merge specification (ms) and per-flow policies (PFUpstreamP
and PFJoinP), formats the requisite information as a MERGETO-
KEN, and generates a signature (MTSig) using its private key kx.
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Join Flow Request (JFR)
ccasthdr flowInfo;
JOINREQ wuserReq;
nodeident sNode;
timestamp ts;

ipsecinfo sinfo;
signature msgSig;
cert sNodeCert;

Sec. Info. Acknowledgement (SIAck)

ccasthdr flowInfo;
JOINREQ wuserReq;
nodeident upNode;
timestamp ts;

signature msgSig;
cert upNodeCert;

Request for Merge Specification (RMS)
ccasthdr flowInfo;

JOINREQ userReq;

nodeident upNode;

timestamp ts;

ipsecinfo sinfo;

signature msgSig;

cert upNodeCert;

Security Information (SecInfo)
ccasthdr flowInfo;
JOINREQ userRegq;
nodeident downNode;
timestamp ts;

ipsecinfo sinfo;
signature msgSig;
cert downNodeCert;

Merge Specification (MS)

ccasthdr flowInfo;
CREATEREQ userSpec;
nodeident downNode;
timestamp ts;

policy nodep;
signature msgSig;

cert downNodeCert;

Concast Join Succeeded (CJS)

ccasthdr flowInfo;
PCREATEREQ pUserSpec;
nodeident downNode;
timestamp ts;

signature msgSig;

cert downNodeCert;

Fig. 3. Secure CSP Messages

It also generates a signature (pMTSig) for the partial MERGETO-
KEN(the MERGETOKEN minus ms). X finally bundles the MERGETO-
KEN, the signatures MTSig an pMTSig, and its certificate
userCert=Cx into a CREATEREQ and hands it over to the local
CSP module.
Step 1: Upon receiving the CREATEREQ cr, the CSP at R verifies the signa-
turesd] er MTS igand cr.pMTS1ig using the public key in the certificate
2 While the channel between the receiver application and the local CSP is probably trusted, this
verification is a good idea because other nodes are going to perform it. If there is a problem, it
is better to detect it locally. (Similarly for the JOINREQ passed by Y".)
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cr.userCert;that the principal of certificate cr.userCert matches
identity cr.user; and that cr.userCert is a valid certificate gener-
ated by a trusted certificate authority. If the verification succeeds then
the CSP creates the local flow state for the flow (R, G) and returns a
success indication to X .

Step 2: To join the flow (R, G), the sending application Y creates a JOINREQ
by including its identity user=Y’, certificate userCert=Cy, and a
signature userSig generated by signing the request using its private
key ky. The JOINREQ is then passed to the local CSP.

Step 3,4: Upon receiving JOINREQ jr from Y, the CSP at S verifies (i) the
join request signature jr.userSig using the public key in certifi-
cate jr.userCert, (ii) that the principal of certificate jr.userCert
matches application identifier jr.user and (iii) that jr.userCert is
a valid certificate. The CSP at .S next checks (i) if Y is allowed by
local policy to act as a concast sender, and (ii) if R is an acceptable
concast receiver node according to local policy, i.e. that S:np.r(R, L)
is trud. If so, a flow state block is created for the flow (R, @) and its
state is marked “pending”. A JFR message containing the user’s join
request userRegq, the current timestamp ts, S’s identifier sNode=S5
and certificate sNodeCert=Clg, ipsec information sinfoto connect
to S and a signature msgSig obtained by signing the JFR message
using kg is generated and forwarded toward R.

Step 5,6: Upon intercepting a JFR message jm on its way to R, the
CSP at N first verifies the signatures jm.userReq.userSig
and jm.msgSig to ensure the authenticity and integrity of
the user request and the JFR message respectively. It also
checks the validity of the timestamp time-check(jm.ts). Next,
the CSP verifies that N:np.r(jm.userReq.user,l), and
N:np.u(jm.sNode, m.sNodeCert) are all true. If so, it cre-
ates a temporary flow state block for the flow (R, G), adds the pair
(m.sNode, m.sNodeCert) to the upstream neighbor list, and marks
the flow “pending”. It also constructs a RMS message containing the
user’s join request userReq, a fresh timestamp ts, NN’s identifier
upNode=Nand certificate upNodeCert=Cp, IPsec information
sinfo needed to connect to node N and a signature msgSigobtained
by signing the RMS message using k. It forwards the RMS message
toward R.

(This process will be repeated at each concast-capable node along
the path to R: the node intercepts the RMS message, validates the
signatures, checks that the message sender is acceptable to its local
upstream node policy, and then constructs and forwards toward R a
signed RMS message containing the original JOINREQ and its own

3 Note that this check should “tentatively succeed” at this stage without a certificate for R. The
purpose is to prevent wasted effort in case R is unacceptable regardless of what credentials are
presented.
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Step 7,8:

Step 9:

Step 10,11:

Step 12:

Step 13,14:

identifier and certificate. For brevity, we assume here that [V is the last
concast-capable node on the path toward R.)

Upon receiving an RMS message rm, the CSP at R, the destination
node, the CSP verifies the signatures rm.userReq.userSigand
rm.msgSig. It also checks that fime-check(rm.ts) A
JpJj(rm.req.user,rm.req.userCert) A

Jp.u(rm.sNode, rm.sNodeCert) A

R:np.u(rm.sNode, rm.sNodeCert) are true, i.e. the flow policy
admits the joining sender Y and both flow and node policies admit
the upstream neighbor who sent the message. If so then it spawns the
Merge daemon for the flow, if not, it sends a signed error message
upstream, indicating that the connection failed for policy reasons.
Before the CSP can send the merge specification to the upstream node
it must create an IPsec tunnel to the upstream node. To do this the
CSP first sets up all necessary IPsec connection information using
rm.sinfoat its own end. It then creates a SECINFO (Security Infor-
mation) message that contains the userReg=rm., a fresh timestamp
ts, R’s identifier downNode and certificate downNodeCert, R’s
IPsec information sinfoand a signature obtined by signing SECINFO
with kg. It then sends the SECINFO message to the upstream node.
Upon receiving the SECINFO message sm, the CSP at the upstream
node IV checks that the flow identifier sm.userReq.f1owID referes
to a legitimate pending flow, and verifies (i) the sigantures
sm.userReq.userSig and sm.msgSig, (ii) and also verifies that
certificate sm.downNodeCert is valid. Next the CSP checks if
time-check(sm.ts)istrue.Itthen appliesitslocal downstreamnode pol-
icy, i.e. verifies that N:np.d(sm.downNode, sm.downNodeCert)
is true. If so, it sets up its local IPsec connection files using sm.sinfo
and establishes a security association with sm.downNode. Upon suc-
cessful creation of the IPsec tunnel the CSP creates a STACK mes-
sage that includes the userReg=sm.userReq, the node’s identity
upNode=N and certificate upNodeCert=Cy, a timestamp ts and
a signature msgSig obtained by signing the STACK message with kg.
CSP then sends the STACK message downstream toward R.

When the tunnel is established, the CSP at R adds the pair (/V,Cy) to
the flow’s upstream neighbor list (UNL) and then constructs a MERGE-
SPEC (Merge Specification) message containing the flow’s create re-
quest userSpec, a fresh timestamp ts, its identity downNode=R
and certificate downNodeCert=Cg. R also adds its upstream policy
np.u to nodeP in the MERGESPEC message, signs the message with
kr and sends it to V.

Upon receiving an MS message mm (through the tunnel), the
upstream node N verifies signatures mm.userSpec.MTSig,
mm.userSpec.pMTSig and mm.msgSig, checks the timestamp
mm.ts (allowing for travel and processing time to get to the receiver
node and back), unpacks and installs the merge specification and
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policies, and then performs the following steps for each node ¢ (with

certificate C) in the flow’s upstream neighbor listH

1. Verify that ¢ is acceptable according to the node upstream policy
received in the merge specification: mm.nodeP(g, Cy).

2. Verify that g is acceptable according to the flow’s upstream neigh-
bor policy: fp.u(q, Cy).

3. Spawn a MERGEd and send the MERGEd an update of the up-
stream neighbor list. (Note that this step happens once for all up-
stream neighbors at intermediate and receiver nodes. At senders,
however, for technical reasons a separate MERGEd is spawned for
each sending application program.)

Step 14,15,16: N checks whether an IPsec tunnel to g already exists. If not, it sets
up IPsec to establish a tunnel, and constructs, signs and sends to g a
SECINFO message. SECINFO contains the original JOINREQ for the
flow, its identity downNode=Nand certificate downNodeCert=Cl,
and IPsec information sinfoto enable establishing a tunnel. The up-
stream node, similar to the previous steps, prepares its end for the cre-
ation of an IPsec tunnel and if successful sends a STACK message to
the downstream node.

Step 17: The downstream node after receiving the STACK message from S sends
the merge specification to the upstream node. But since the upstream
node S was added after the receipt of a JFR message and not a RMS
message, a partial merge specification instead of a full merge specifi-
cation is sent upstream. N thus creates a pms message that includes
the original userSpec=mm.userSpec, the partial merge specifi-
cation pmergespec, a timestamp ts, /N’s identity downNode=N and
certificate downNodeCert=Cly, and a signature msgSig obtained
by signing the pms message using ky. The CSP then sends the pms
message upstream to S.

Step 18: Upon receiving a PMS message pm, the CSP at the sender node S ver-
ifies (i) the signatures pm.userSpec.pMTSigand pm.msgSig, (ii)
the timestamp pm.ts, and (iii) the certificate pm.downNodeCert.
If the verification is successful S spwans a partial merge daemon and
notifies Y that the join operation has completed, and data transfer can
begin.

5 Security Analysis

The Security Architecture for Active Networks [11] enumerates the various attacks
that can be mounted against an active network framework. Given this threat model,
we briefly describe how our secure concast service fares under these various attack
scenarios.

* Note that at this point it has already been established that the originating user satisfies fp.j, and
that the downstream node satisfies N :np.d, the local downstream node policy.
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Attacks resulting in usurpation: Theft of service attacks are prevented by concast’s

authentication mechanisms. As described earlier, the concast service is based on
well-defined trust relationships that must be met before any node, sender or in-
termediate merge node, will be added to the flow. Because the flow is established
hop-by-hop, each node’s authenticity and integrity can be verified individually and
compared against the receiver’s and provider’s security policies before being in-
cluded in the flow. As a result, only nodes with the proper certification are allowed
to access the service.

Attacks resulting in unauthorized disclosure: Outside of breaking into an end-

system or router, packet snooping is the most common technique for obtaining
access to content. In secure concast, all traffic is encrypted. Merge specification are
exchanged via encrypted IPsec tunnels and the data packets are exchanged using a
shared key that is only disclosed to authenticated group members.

Attacks resulting in deception: Secure concast prevents masquerading by spoofing

attacks via two methods. First, all control messages are sent over IPsec tunnels
whose endpoints have been authenticated. The only exception are the initial JFR
and RMS messages which are transmitted in the clear. However, these message
carry a digital signature that can help identify spoofed addresses. Even if these
messages are not identified as spoofed messages, they are simply used to trigger the
initiation of fully authenticated IPsec tunnel where their identity will be checked.
Second, all data packets are encrypted and carry a message authentication code.
Packets can be spoofed, but without the correct encryption key, the merge dae-
mon will discard them. At best, such packets result in a denial of service attack
(see below).

Replay attacks are another form of deception. Because all control packets are car-
ried over the IPsec tunnel, replay attacks are automatically detected by IPsec. Only
the initial JFR and RMS travel outside the tunnel. Both carry an authenticated
timestamp that is used to detect packets that are outside the acceptable delivery
time window. Packets replayed during the window while the tunnel exists are au-
tomatically discarded. In regards to the data channel, all packets are encrypted and
can carry a sequence number that can be used to detect duplicates if the user desires.

Substitution attacks, which represent another form of deception, are prevented via
the use of cryptographic integrity checks. All packets are digitally signed to guar-
antee the packets integrity.

Attacks resulting in disruption/Denial of Service: These types of attacks present the

biggest problem for the secure concast service. Although secure concast prevents
some of the attacks, there are several different attacks that could be launched to
consume packet processing cycles at network nodes, the receiver, or senders.

An example of a disruption attack that secure concast prevents is the join circum-
vention attack. In this case a malicious node circumvents the join process and
simply sends data to a merge daemon for merging. Because the data cannot be
decrypted, the merge daemon does not merge the packet into the stream, thereby
preventing disruption of the stream with bogus data. However, the time spent pro-
cessing the packet still represents a DoS attack that is difficult to prevent.
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Fig. 4. Concast video application containing four merged streams

DoS attacks can also be mounted via false requests. Every time a bogus join request
is received, the network nodes expends resources trying to setup the IPsec tunnel,
only to find that the sender is not responding.

6 Performance Evaluation

In order to measure the performance of our secured concast service, we used a concast
video-merging application[12]. Some video applications require the ability to receive
video feeds from multiple sources simultaneously; examples include distance learning
and video monitoring/surveillance. The objective is to receive the best possible video
quality from all sources. For our concast video merging application, a concast session
is established that transcodes the incoming streams into lower-quality streams, thereby
reducing the network bandwidth requirements. The idea is to replace uncontrolled loss
due to congestion with controlled loss due to transcoding. To support this type of appli-
cation, we designed a simple merge function that scales the incoming video stream by
down-sampling the pixels that comprise each frame of the video, and combining all in-
coming streams into a single outgoing stream. In other words, each network link should
carry no more than one video steam. To achieve this, the merge specification keeps track
of the number of incoming video streams and the number of original video streams en-
coded in each incoming stream. It then assigns a region of each outgoing frame to each
incoming video stream and down-samples the stream appropriately to fit in the assigned
region. The assignment of streams to regions takes into account the relative sizes of the
(possibly already down-sampled) incoming streams. As new streams “join” the concast
session, the existing images are adjusted to make room for the stream. Each composite
stream carries information about how many original streams it contains and how they
have last been combined so that each node can determine how to combine its incoming
streams. This ensures that even if an unbalanced merge tree was built by all the concast
senders, the final video stream delivered to the concast receiver will have a roughly
proportional display area for each of the constituent video streams.
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Fig. 5. Experimental Network - Secure Concast Video Merging

Our test topology is shown in Figure[3l We used four video senders, each transmitting
an uncompressed black-and-white 320x240 video stream at a given frame rate. At each
merging hop in the network the frames were merged into a single sub-sampled image.
Figuredlis a resulting frame captured at the receiver node. We ran with both a ’NULL’
cipher specification as well as using AES (128-bit) encryption with a SHA1 message
digest for 4, 6, and 8 frames per second (fps). In each case, we measured the total
system and user level CPU utilization. The data was taken from merge node 3 in the
experimental topology. All nodes in the network were 1.5Ghz Pentiums with 128MB
of RAM, resulting in similar results for the remaining merge nodes. Our concast merge
specification was written in Java and runs in a user-level JVM, which accounts for the
majority of the load. The results of our experiments are presented in figure|dl As can be
seen from the graphs, in each case encryption/decryption of the video streams imposed
an overhead of roughly 20 percent. We found 8 frames per second to be the maximum
speed we could attain while maintaining video quality. As can be seen from the results
for AES/SHA1 with 8 fps, the merge nodes were running at maximum CPU utilization
(system + user). When trying to go beyond 8 fps the nodes were overloaded which
resulted in packet loss. The initial high load in each case is measurement taken during
JVM startup.

Our results demonstrate that the presented security mechanism (in particular, per
packet data security) is feasible and can be implemented with a reasonable overhead.
Note that our implementation of the secure merge specification has been done in Java
only with the intention to show feasibility and not optimality.

7 Related Work

The DARPA Active Network community has defined an architecture for an active
nodes [[13]] that comprises a NodeOS and one or more Execution Environments (EE). A
security architecture has been proposed for the architectural framework, with particular
attention paid to capsule-based EEs (i.e. those that expect code to be included in each
packet). An important observation by the authors is that some part of the active packet is
dynamic (changes at intermediate hops) and the rest of it is static. Digital signatures are
used to provide end-to-end authentication and integrity protection to the static part of
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Fig. 6. Secure Merge Processing Overhead

the packet. HMAC-SHA-1 integrity protection is used between two neighboring nodes
to provide integrity protection. Certificates are stored in DNS CERT records and ev-
ery packet carries references to the appropriate certificates. Authorization to execute
code is based on the Java 2 security architecture with modifications to support multiple
policies, a feature often needed in active networks.

Like the AN security architecture, SANTS [11]] differs from the approach described
in this paper mainly in its focus on a capsule-based processing model. Every packet
is singly responsible from its own authentication, integrity and authorization. In our
approach, however, packets belong to a flow. Initial efforts are required to authorize all
the members belonging to the flow. But once achieved, the problem of confidentiality
and integrity is simplified due to the use of a shared secret by all members of the flow.

The Switchware project [14] included one of the first attempts to deal with security
in active networks. Like concast, the Switchware architecture allowed for flow-based
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programmability. The Secure Active Networks Environment (SANE) [[15] also allowed
an end-system control over the nodes participating in its flow, by setting up nested
tunnels hop-by-hop. Unlike our approach, however, the SANE approach exposes the
identity of every node being programmed to the originating end system. While this
avoids the need for transitive trust, it limits scalability.

A framework to provide hop-by-hop security in an active networking environment
for unicast and multicast applications was proposed by Krishnaswamy et.al [[16]. Their
approach makes use of a centralized Keying Server (KSV) which provides an interface
to accept a secure topology in the form of “links” or “groups” for unicast and multicast
respectively. Every node that is a part of the secure topology sets up an IKE SA with
the KSV. The KSV uses this SA to securely convey to the each “node” in the topology
all information that it needs to reliably setup a security association with its peer(s).
They use Linux IPChains to enforce a policy on which packets can be accepted into the
node, and they use the DNS service to retrieve the public keys associated with nodes.
However, in their approach all flows seem to share the same hop-by-hop channel for
security. Also, there does not seem to be a concept of node-level or flow-level policies
that would enable nodes to control the membership in the flow.

8 Conclusion

A number of security challenges are associated with active networking applications
that process data on a per hop basis. Some of the requirements of such applications
are secure distribution of the processing code and shared secrets, authentication and
authorization of the members, confidentiality and integrity of application data. Standard
end-to-end mechanisms cannot be used to solve these problems.

In this paper we have attempted to solve the security challenges specific to concast,
a many-to-one communication service. A fundamental feature of our solution is the
use of IPsec which provides us confidentiality, authentication and integrity on a point-
to-point link. We combine IPsec with a rich set of policies and this lets us identify
legitimate members of a flow, define trust relationships among the various members,
and outline the type of protection required by each node and the service as a whole.
The availability of a secure control plane helps us provide a platform to applications
to securely distribute shared secrets and thereby achieve confidentiality and integrity of
application data.
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Abstract. The proliferation of computer viruses and Internet worms
has had a major impact on the Internet Community. Cleanup and control
of malicious software (malware) has become a key problem for network
administrators. Effective techniques are now needed to protect networks
against outbreaks of malware. Wire-speed firewalls have been widely de-
ployed to limit the flow of traffic from untrusted domains. But these
devices weakness resides in a limited ability to protect networks from
infected machines on otherwise trusted networks.

Progressive network administrators have been using an Intrusion Pre-
vention System (IPS) to actively block the flow of malicious traffic. New
types of active and extensible network systems that use both micro-
processors and reconfigurable logic can perform wire-speed services in
order to protect networks against computer virus and Internet worm
propagation. This paper discusses a scalable system that makes use of
automated worm detection and intrusion prevention to stop the spread
of computer viruses and Internet worms using extensible hardware com-
ponents distributed throughout a network. The contribution of this work
is to present how to manage and configure large numbers of distributed
and extensible IPSs.

1 Introduction

Security has become a daunting task for network administrators. There are nu-
merous vulnerabilities that affect the millions of computers attached to the In-
ternet. Network administrators are overwhelmed by the task of securing their
networks against operating system flaws, poorly written network applications,
and end-system misconfigurations. Security devices integrated within the net-
work have become a necessity for networks that need to be safe and reliable.
Network administrators currently use several types of devices to secure their
networks. The first line of defense is typically a firewall. Firewalls provide some
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protection by limiting how packets destined to and from machines on the Internet
send traffic through a network node. While firewalls are useful, they lack the
features needed to filter malicious content that passes between Internet hosts
that have become infected with an Internet worm or computer virus. To detect
a worm or virus activity, intrusion detection systems (IDSs) are needed. IDSs
help administrators detect when exploits pass over a network and they log which
machines were targeted. The most advanced type of network security device is
called an Intrusion Prevention System (IPS). An IPS scans the content of traffic
flowing through a network and actively drops the traffic flows which are detected
to be malicious. Unfortunately, there are several problems with the way that
firewall, IDS, and IPS devices are deployed throughout the Internet today.

In recent years, Internet worms generally entered a network only at the edge.
Today, malware is multi-modal meaning that it uses multiple techniques to prop-
agate and infect machines. Multi-modal malware can spread both over the net-
work as a worm and via removable media as a virus. Multi-modal worms provide
several mechanisms for an infected machine to infect other machines using other
modes independent of the original mode of infection. With Sasser, for example,
a laptop user could have their machine infected by network traffic while it was
connected to a Digital Subscriber Line (DSL) at home. When that same user
takes the machine to work, that laptop infects the rest of the hosts on the in-
ternal network by using a port scan. To be effective against this type of threat,
network security devices need to distributed throughout the network, not just
used at the edge.
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Fig. 1. High level view of potential threats
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A problem with network security devices is that they can be hard to manage.
Many IPS and IDS devices lack the ability to automatically download patches
that allow them to protect networks against new threats. As the number of net-
work security devices increase, so does the time spent by an administrator to
push out the latest rules and virus signatures to remote devices. Methods are
needed to automatically distribute information regarding new virus signatures
to all of the IPS devices on a network. Better security for entire networks can be
achieved with a Distributed Intrusion Prevention System (DIPS). Figure [ de-
picts an example network containing DIPS spread throughout a network. Hosts
(H) attach to Subnets (S). Routers (R) forward traffic between subnets. DIPS
nodes placed in-line with high-speed links actively measure and filter malicious
traffic attempting to flow between subnets, routers, or virtual local area net-
works (V). We believe that active and extensible networks can be used as the
foundation to implement highly scalable distributed intrusion prevention devices
and that active network technology can be used to implement the control and
configuration software for a network of DIPS.

2 Intrusion Detection

One of the first widely used intrusion detection systems is called SNORT [I].
SNORT enabled network administrators to promiscuously scan a network link
to see what type of exploits were passing over the network and being used to
attack their hosts. HOGWASH [2] expanded upon SNORT to implement intru-
sion prevention functions. Traffic passing through a PC that ran the HOGWASH
software would be sanitized to remove malware and malformed packets before
the exploit could reach the machines on the other side of the network. A problem
with HOGWASH was that the limited throughput of the PC that ran the HOG-
WASH software became a bottleneck to network throughput. Packets would be
delayed or dropped as the software that executed on the node saturated the
capacity of the processor.

2.1 Intrusion Prevention in Hardware

Intrusion prevention systems that use reconfigurable hardware can detect signa-
tures at high speeds by scanning for signatures in traffic that contain malware
and blocking certain data transmissions [3]. One system that scanned for signa-
tures in packets payloads and blocked malware using Field Programmable Gate
Array (FPGA) technology was described in [4]. Large numbers of parallel Finite
State Machines (FSMs) were configured into FPGA hardware to implement the
computationally intensive function of scanning for regular expressions. Another
system used Bloom filters to scan for large numbers of signatures with FPGA
hardware. Bloom filters had allowed for fast incremental updates to the signature
list with nearly no delay [5].
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2.2 Distributed Firewalls and IDS Control

Distributed control is needed to manage large numbers of firewalls or IDSs. The
distributed firewall described in [6] allows for a centralized access control policy
that could be enforced at multiple remote locations. In 7], the implementation of
a distributed firewall using the KeyNote trust management system was described
in order to ensure secure transmission of credentials and distribution of network
policies.

In other work, Huang introduced a framework for large scale intrusion de-
tection using strategic decision making [8]. The model analyzes a sequence of
events and uses global knowledge to make an informed decision regarding an
intrusion. This approach relies on local agents to monitor and announce events,
while a global agent predicts trends and makes strategic decisions. Here the sen-
sor nodes do not actively block traffic until receiving an order from a global
command node.

2.3 Real-Time Anomaly and Worm Detection

A system which discovers worms on a network in real-time has been developed
using reconfigurable hardware [9]. Network content is monitored to discover fre-
quently occurring signatures that appear in packet payloads. The system uses
FPGAs to scan packets for patterns of similar content at Gigabit per second link
rates. This system can be used to automatically detect signatures of new Inter-
net worms just as an outbreak begins. Another system has been developed that
uses anomaly detection to contain a worm to a small subsection of the network
[10]. This approach allows for cooperation among multiple containment devices
to respond an attack more effectively.

2.4 Peer-to-Peer Control and Management

In order for a DIPS to be scalable, there needs to be a way to control and
configure thousands to tens of thousands of remote devices. It is not necessary
to implement a centralized control of all DIPS devices. Peer-to-peer strategies
can and should be used to distribute information in large-scale networks.

A software system called Scribe [11] provides a scalable, self-organizing Peer-
to-Peer (P2P) location and routing substrate. Scribe was built on top of Pastry
[12] and added functionality to perform large-scale, decentralized, application-
level multicast. In the Scribe model, nodes participate as equal participants in
groups. These nodes are joined together using routes provided by the Pastry
software to form a multicast tree. Scribe provides an API for nodes joining
groups and takes advantage of the robustness and reliability provided by Pastry.
The effectiveness of a coordinated approach as compared to other types of P2P
communication models has been proven in [I3].

Janakiraman [I4] proposed a scalable IDS/IPS solution that distributed a
firewall and placed IDS systems throughout a P2P network. In this work, nodes
share information on network intrusion attacks that occur throughout the net-
work. The prototype system classified intrusions such as failed login attempts or
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port scans. A framework called DShield provides a platform for firewalls to share
intrusion information [I5]. By sharing information about new exploits among
multiple machines, better protection can be provided than if information was
only collected locally. DShield interacts with network administrators by provid-
ing graphs in real-time that include the identification of the top attacker and
most prevalent port being targeted. Other work in network management for se-
curity devices includes the model proposed by Hyland and Sandhu [16]. In this
work, security devices on the network are described as managed objects that
interact through SNMP. A new protocol is also introduced to propagate security
information throughout a network similar to the mechanism used by Internet
routing protocols.

2.5 Security

In order to protect the network of DIPS, the infrastructure that provides pro-
tection must be secure itself. The system must ensure that only trusted systems
can control the operation of remote DIPS. Some work has been done to secure
the control and configuration of reconfigurable hardware platforms [I7]. But as
noted there are challenges with the implementation of a public key exchange us-
ing hardware alone. Key generation functions can be better handled by a general
purpose processor in software. There are now FPGAs, like the Xilinx Virtex IT
Pro, that embed a full-feature PowerPC core within the FPGA logic array to
allow use of both hardware and software on a single integrated circuit [I§].

Distributed security techniques have also been proposed in Centaurus2 [20]
and SHOMAR [21]. These projects demonstrated how decentralized services
throughout an enterprise could provide authentication, anti-replay prevention,
and non-repudiation. The security model employed is based around a simplified
public-key infrastructure (PKI) [22]. This allows nodes to communicate and au-
thenticate themselves throughout an untrusted network. Centaurus2 describes
the framework for supporting this secure infrastructure, while SHOMAR demon-
strates a distributed intrusion detection system (DIDS) using the aforementioned
security techniques.

3 Distributed Intrusion Prevention Design Framework

To protect entire networks from rapid outbreaks of worms, computer viruses,
and other malware; next generation networks should actively scan data passing
through the network and provide an automated response in a coordinated fash-
ion to stop the spread of malware. We feel that the active networking community
is well positioned to develop the technologies which can provide automated pro-
tection of networks. In fact, data security appears to be a killer application that
will drive the use of active and extensible networks in the Global Internet.
Several issues must be considered in order to design effective distributed in-
trusion prevention systems. One goal is to detect and block large numbers of
Internet worms and viruses. Another goal is to enable large numbers of DIPS
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to organize themselves into an overlay network and securely communicate with
each other. To address these challenges, a framework has been developed that
describes how multiple sensors and actuator nodes communicate to perform in-
trusion detection and prevention in a secure distributed system.

3.1 Sensor and Actuator Nodes

We envision that each active network node in the intrusion prevention system
contains six primary modules in order to detect and block worms and viruses.
The first module in each node reconstructs Transmission Control Protocol (TCP)
flows passing through the network node [27]. The second module processes head-
ers and payloads to match rules that are specified using a syntax like the one
used by SNORT [26]. The third module drops packets or flows containing known
virus signatures. The fourth module performs anomaly detection. Unusual net-
work activities cause the node to generate an alert, unusual activity includes
port scans or a particular host opening a large number of TCP connections in
a small period of time [I0]. The fifth module monitors network traffic looking
for a large increase in commonly occurring content. The sixth module decides
what traffic flows to filter based on clues from the content scanning and anomaly
detector modules.

3.2 Management Nodes

System administrators do not have the ability to monitor all of the TPSs dis-
tributed throughout a network, nor can they react quickly enough to stop an
outbreak the moment that a new virus is discovered. Active intrusion preven-
tion systems are needed that automatically reprogram IPS devices to stop rapid
worm outbreaks. To be effective, entire networks of DIPS should be reconfigured
within seconds of a new worm outbreak.

Scalable mechanisms are needed to control and configure large numbers (thou-
sands to tens of thousands) of distributed intrusion prevention systems, in large
scale, self-organizing networks. We propose use of a P2P solution based on the
Scribe model [11].

To deploy active protection in the Internet, we propose that nodes be managed
as small and large groups. Small groups consist of hundreds to thousands of
hosts attached to tens to hundreds of active IPS nodes. Large groups encompass
multiple small groups, and are managed by individual network providers with
different levels of trust established between them.

3.3 Security for Group Membership

Care must be taken to decide whether or not to trust a node when it attempts
to join a group. Access Control Lists (ACLs) restrict communication among a
group of nodes. In order for a new DIPS to join the group, the DIPS must be
authenticated by a node already trusted on the network. If a node lies outside
of the trust domain, other techniques are needed to verify its credentials.
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Communication among DIPS nodes in a secure manner is critical. Public Key
Infrastructure (PKI) uses digital certificates, public-key cryptography, and cer-
tificate authorities to implement trust relationships and secure communication
between network nodes [23]. To secure the entire distributed network of intrusion
prevention systems, we propose using a secure communication model based on
SHOMAR [21].

In this model, communication occurs between a DIPS, the Certificate Au-
thority (CA), and the DIPS Manager (DM). The CA generates and signs x.509
certificates [24] for each DIPS in the network. The CA also verifies certificate
queries from DIPS. The DM holds an ACL of all the nodes and their group
membership capabilities.

As with [21], certificates are initially generated for each DIPS. That informa-
tion is placed into the DIPS through an out-of-band mechanism. Certificates are
stored on each DIPS in a secure manner, using a mechanism such as a PKCS#11
container [25].

4 Distributed Intrusion Prevention System Model

Distributed intrusion prevention can be implemented in a way that both provides
high performance and is cost effective. The model uses both extensible hardware
to process large volumes of data and active network software to manage and
control the distributed system.

4.1 Extensible Hardware

Extensible hardware enables network traffic to be processed at the full line rate
of Gigabit/second networks. As described in [3], an IPS was built using the Field
Programmable Port Extender (FPX) platform. The FPX is equipped with a Vir-
tex 2000E FPGA that can be dynamically reconfigured over a network to perform
data processing functions. Several functions have been implemented on the FPX
that perform IPS functions as modules. A TCP processor was implemented that
can reconstruct traffic in 8 million active flows at 2.5 Gigabits/second [27]. A
Bloom Filter was implemented on the FPX to scan for 10000 virus signatures at
a data rate of 2.4Gbits/sec [5]. An Internet Security module was implemented
that performs a subset of the SNORT functionality by processing headers and
performing full packet scanning in hardware [26]. A worm detection module was
also prototyped on the FPX platform [9].

The FPX platform has been integrated into a chassis that allows multiple
FPX cards to be stacked and includes an embedded Single Board Computer
(SBC). This SBC contains an Intel Celeron Processor that runs Linux from a
flash memory device. The Celeron processor is only used to perform control
functions. All of the core packet processing is done on one or more FPX cards.
Figure 2 shows a photo of this new system, called the GVS 1500, with the cover
open. As can be seen in the figure, FPX cards are stacked in the front of the
chassis below two Gigabit Ethernet line cards. The SBC can be seen in the back
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of the chassis. When the system is powered on, the SBC boots into Linux and
programs FPX cards using a program called NCHARGE [2§].

4.2 Active Network Management

We propose to execute management and control services of the distributed sys-
tem using the Scribe communication protocol. Each IPS would automatically
discover other IPS in the distributed network using a communication protocol
defined by Pastry. The entire DIPS would then self-organize into a tree structure
as a single group.

The FreePastry tool provides an open-source Java implementation of Pastry
including Scribe [29]. This software serves as framework for the P2P substrate
with security extensions to allow for encrypted communication.

4.3 Detection and Reaction to New Malware

There are many characteristics of computer activity that indicate an end host
has been infected with malware. Each IPS sensor has a local view of the traffic
passing to and from hosts on a local subnet. The activity may be observed as a
port scan, worm propagation, high volumes of traffic, or other types of anomalous
behavior. Observed behavior might be malware, or it could instead be a false
positive triggered by a valid use of the host.

By fusing data collected by multiple sensors, then coordinating the efforts
of multiple IPS, effective security against worm attacks can be implemented.

Fig. 2. Distributed Intrusion Prevent System (DIPS)
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We envision that three phases are needed in order to block malware and avoid
programming the network to block legitimate traffic, as shown in figure B To
be effective against a worst case worm, all of these activities must be performed
within a few seconds to a minute.

Phase 1

Phase 2

Phase 3

Multiple sensors detect unusual
network activity and report
signature to DIPS

DIPS tests to see if signature is
a false positive by programming a
subset of nodes to measure effect

DIPS distribute command to
block malware throughout the
global network

of intrusion prevention

Time

Fig. 3. Phases of the DIPS during a worst-case worm outbreak

4.4 Adding a New IPS to the Trusted DIPS

To build a large network of trusted IPS nodes, nodes must assemble in a secure
and scalable way. Several steps are required for an IPS to join an DIPS group,
as shown in figure [l

Node B
Certificate Verification
Request/Response E
DIPS
Certificate
Authority
Wants
to join
group Group Membership
Request/Response
Node A E
[a——
DIPS — DIPS
Verification of Node B’s Manager

Group Permissions

Fig. 4. DIPS joining a group

The example shows how DIPS B would join the group for which A is already
a member. B first verifies the digital certificate it holds for the CA by issuing a
certificate request. The CA then issues a signed response for the request, assum-
ing it is valid. B next sends a message to the DM for a certificate request and
to register itself to join the group. The DM responds with an acknowledgment
indicating that it is eligible to join the groups predetermined for B by a network
administrator. B then sends a request to A indicating it wishes to join the group.
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A issues a request to the DM to verify B’s membership criteria, once validated
B is allowed to become a part of the group and is able to communicate with A.

This verification process is only needed when nodes join a group. The number
of requests received by the CA and the DM will be fairly small in comparison to
the communication between nodes implementing the SCRIBE multicast overlay.

The model works well with the Scribe infrastructure, as the only nodes allowed
to join require the proper credentials to participate in the overlay network. In
this example, each DIPS maintains a table of the nodes that it has authenticated
as belonging to the group.

Since the time scale in which a DIPS joins or leaves a group is slow, the
amount of overhead associated with introducing a new DIPS to the network is
relatively small. Software can perform the authentication task and establish a
secure connection via a digital certificate.

Trust between the networks can be established using properties similar to
that of the Web-of-Trust model used for PGP communication [30]. For networks
not under the control of a single authority, an administrator of one domain
can choose to receive updates from other domains. In order for this model to
scale with larger networks, a decentralized CA model can be implemented. An
example of one such system was described by Koga [31].

5 Conclusion

The spread of worms and viruses throughout the Internet has had a devastating
impact on end users who suffer when their computers become infected with mal-
ware and on system administrators who deal with the burden of protecting entire
networks of hosts. Active and extensible networks can be used to implement a
distributed intrusion prevention system that decreases the rate at which worms
and viruses spread. By stopping or slowing a worm outbreak, data can be saved
and machines can be patched before they would otherwise become infected. Pas-
sive systems for intrusion detection have been used in the past to alert when a
machine is compromised or a network is under attack. Active systems can be
used to stop an attack and prevent a worm from spreading. By using extensi-
ble hardware, this type of protection can be provided with minimal impact on
overall network performance.

Distributed network intrusion prevention systems can be used to protect large
numbers of system globally. This paper described how active network manage-
ment software and extensible hardware can work together in order to protect
high speed networks from fast outbreaks of new Internet worms and viruses.
A prototype implementation of the system is being developed at Washington
University in Saint Louis and being deployed by Global Velocity.

6 Future Work

Large test beds should be built in order to evaluate the effectiveness of the dis-
tributed system. The circuits that implement the hardware functionality of the
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system are already in place. Anomaly detection modules can be developed as re-
configurable modules then deployed using active network technology. Time and
effort is needed to port the Pastry/Scribe architecture to the DIPS platform.
Measurements of the system should be performed to determine how quickly the
system can deploy protection against new virus signatures. We plan to deploy
this infrastructure on large scale networks to determine how quickly it can quar-
antine a network from the spread of viruses as the system reacts to various
changes in the network.
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Abstract. Programmable networks aim at the fast and flexible creation of ser-
vices within a network. Often cited examples are audio and video transcoding,
application layer multicast, or mobility and resilience support. In order to become
commercially viable, programmable networks must provide authentication, au-
thorization and accounting functionality. The mechanisms used to achieve these
functionalities must be secure, reliable, and scalable, to be used in production
scale programmable networks. Additionally programmable nodes must resist var-
ious kinds of attacks, such as denial of service or replay attacks. Fraudulent use
by individual users must also be prohibited.

This paper describes the design and implementation of a secure, reliable, and
scalable signaling mechanism clients can use to initiate service startup and to
manage services running on the nodes of a programmable network. This mecha-
nism is designed for production scale networks with AAA-functionality.

Keywords: Programmable Networks, Flexible Service Platforms, Secure
Signaling.

1 Introduction

Programmable and active networks extend programmability of network components
from the network’s edge into the network itself. (See [2L3] for an overview of the ba-
sic concepts). Among its key motivations is the idea to quickly and flexibly create new
services within a network. This could overcome the long deployment-cycles usually ex-
perienced in this area. In such programmable networks, services are created by so-called
service modules. These are executed in an execution environment on the programmable
nodes of the system (e.g., [8]). The user can start such service on demand to support its
already running application.

Varying from approach to approach, programmable nodes are expected to be de-
ployed densely or sparsely. The FlexiNet project (www.flexinet.de), in the context of
which this work has been performed, assumes that the programmable nodes are placed
near the network edge, e.g. as gateway of a (small) sub-network or as additional pro-
grammable nodes within such a sub-network. Typical locations might thus be the ac-
cess routers of wireless networks, small offices, home offices, or off-path programmable
nodes at the Internet service provider or customer premises. These off-path nodes pro-
vide supplementary resources for services the on-path routers provide. The service
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startup process in general is as follows: first access rights of the client to start the ser-
vice must be checked and then an evaluation process [8] selects the node where the ser-
vice gets executed. The access rights of a client are checked by an authorization server
which can be found dynamically by the client through a indirect signalling scheme using
any one programmable node on path between client and content server (see section [2)).
After successful authorization the evaluation process determine the programmable node
on which the service gets executed — depending on the service this can be the on path
node or any off path node. For this paper we will assume that the service gets executed
at the programmable node which is involved in the authentication process.

In todays networks it must be assumed that the traffic between the clients, the pro-
grammable nodes, and the service providers could be intercepted and spoofed by ma-
licious devices at will. Since programmable network nodes are enhanced routers, their
availability is critical for the overall connectivity of clients in the sub-network behind
such a node. A programmable node usually handles data streams for multiple receivers.
This makes a programmable network node an attractive target for any kind of attack.
Hence, special care has to be taken to assure robustness and stability.

The second goal to be achieved is user authentication, authorization, and accounting
(AAA). A service provider might want to offer different kinds of services to different
user groups. Some of the services should be accessible only by local users, other ser-
vices may be used by roaming users, too. Services might require a fee, and therefore
accounting information must reliably be collected by the provider. This means that an
attacker must not be able to forge its identity in order to charge the costs to another user
or to start services he does not have access permissions to.

Scalability of the signaling scheme is the third goal of the design. The mechanisms
used must cope with multiple signaling messages from many users in parallel. The
scalability of the system depends on the resources that handle requests and how these
can be duplicated and distributed over the network. The presented design will show
on the one hand that only little resources will be needed at the programmable node’s
side to handle requests and on the other hand that we are willing to overwhelm the
authentication and authorization server to preserve the robustness and stability of the
programmable node.

This paper presents a secure service signaling mechanism that allows the reliable
operation of a programmable network under regular conditions and attacks. Section
presents the design of our approach and a threat analysis, followed by implementation
details of the proposed mechanisms in section 3] and section 3] finally concludes with
the summary.

2 A Flexible Signaling Concept

Generally, there are four types of entities in the programmable network scenario we
examine. Without loss of generality we assume that there is a client, a server, a pro-
grammable node, and a service module repository (see fig.[I)). The client receives a data
stream from the server and wants to use a special service provided by the programmable
network. The service modules that provide this service are stored in the service module
repository. From there they are loaded onto the programmable node. To start the service
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the user sends a so-called service start request to the programmable network. This can
be done either directly or indirectly.

Direct signaling can only be used if the client knows one or more programmable
nodes, e.g. by using a dynamic configuration protocol like DHCP. Static configuration
of clients might also be a solution in some scenarios. With direct signaling the service
start request can then be sent directly to one of the programmable nodes.

Indirect signaling applies when the client has no knowledge about any programmable
node. In this case, the client simply sends its service start request towards the server’s
address. Any programmable node that supports indirect signaling must filter transiting
packets to discover service start requests. In this way a indirect signalling packet is
filtered by the first programmable node on the path between client and server. Such a
filter is easily implemented as a programmable network service as shown in section[3l

request
service
module

service

————————— -
request Server

Client

setup
service

Fig. 1. Service deployment

The minimum of information that must be contained in a service start request is a
service identifier. How these identifiers are assigned to the services, is outside the scope
of this paper, but we assume that the client knows the identifier, which is associated
with the service it is about to start. Furthermore, we assume that the client’s address is
included in the service start request, too. It is used to notify the client of the success or
failure of its request.

This simple and flexible approach suffices for a client to set up a service. Beyond
the basic signaling exist several issues of the network provider concern e.g. to allow
accounting: Who is requesting a service in the network? Is that person authorized to
do so? And to secure its network infrastructure: How can the programmable nodes be
protected from spoofed service start requests? How can replay attacks be prevented?
These questions will be addressed in the following sections:

2.1 A Secure Approach

To design a secure system, some assumptions about trust relationships of the involved
parties must be clarified. The service provider runs the programmable network nodes,
the service module repositories, an authentication server, and an authorization server.
Both servers are fully trusted by the programmable nodes and the repositories.
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The trust relationships of the client are more complicated, especially if clients can
roam between multiple domains. To trust a repository, the client must be able to au-
thenticate the repository. After a successful authentication, the client will bind a session
key and other temporal data to the proven identity of the repository, and only messages
authenticated with that session key are accepted. Since repository and programmable
node implement a full trust relationship, the client extends its trust of the repository to
all programmable nodes in the domain of this repository. A programmable node proves
its domain membership by authenticating its messages to the client through the knowl-
edge of the session key. After terminating the session, all temporarily data gets deleted,
and no further messages authenticated with that key are accepted any more.

On the other hand, the repository needs to authenticate the client to grant or deny
access to its services. Since clients may roam to the domain of the repository, a long
term secret between these two entities can not be assumed. A PKI-based authentication
scheme provides secure authentication with good scalability. For free services, such a
scheme is sufficient but not for services that require a fee. Depending on the economic
relationship between the service provider and the client, accounting information must
be available to the repository. This might imply secure communication between the
repository and an accounting server in the home network of the client. The client must
provide information about its accounting server to the repository during authentication
to allow online checking of e.g. available credit.

The protection of the programmable nodes from attacks is the top priority. To this
end, we propose the paradigm that a programmable node only handles authenticated
requests and does not establish any state for unauthenticated requests on the node. On
the other hand, for administrative reasons, user authentication and authorization data
should not have to be distributed to every programmable node. We accomplish these
two fundamental requirements by combining both the authentication scheme (used for
initial client contacts) with a special request redirection mechanism. This mechanism
scales very well with the number of clients since a programmable node can redirect
messages up to 100 MBit/s in real-time.

Basic Constraints. As described above, we do not assume any pre-shared secret
between the client and the programmable network provider. However, since a pure
certificate-based approach suffers from the much greater computational overhead of
public key cryptography, as compared to a hash function or secret key cryptography,
the use of asymmetric cryptographic algorithms should be limited as much as possible.
Experiments on hand-held devices like a Palm (20 MHz - Dragonball) were presented
in [5]. They show that only 0.14 RSA sign operations can be performed per second,
rendering a application based on such operations unusable.

2.2 Authentication Scheme

Our proposed authentication scheme uses public key algorithms to prove the client’s
identity to the network provider, to prove the identity of the service provider to the
client, and — at the same time — to distribute the keys for the HMAC algorithm that
is later used for the authorization scheme and client to service communication. The
process is as follows:
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The client generates an authentication request containing its identity together with
its certificate and the socket (IP-address and UDP port number), at which he will listen
for the response. Before sending this request to the programmable node the client cre-
ates a MAC (message authentication code) for the message. This is a digitally signed
hash value of the message, and is appended to it. Thereafter, the request is sent to a
programmable node by direct or indirect signaling.

The programmable node forwards the request to the authentication server using the
request redirection mechanism, where the identity of the client is checked. If the authen-
tication fails, no error message is sent to the client, to prevent the system from respond-
ing to flooding attacks. Otherwise the authentication server adds the session key, a key
lifetime, two sequence numbers, its certificate, and the IP-address of the authorization
server to the client message to create the response. The session key is encrypted with
the client’s public key and the complete authentication reply is digitally signed by the
authentication server. The response is sent to the IP address and the port number of the
client contained in the request.

If the authorization server is not collocated with the authentication server the ses-
sion dependent data must be transferred to the authorization server, too. Therefore, the
authentication server sends the session key and the two sequence numbers to the autho-
rization server in an additional message. This message must be integrity protected and
confidentially transferred to the authorization server.

The client validates the server’s certificate first, either on its own or by an online
protocols like OCSP [[L1]]. Then it checks the signature and finally decrypts the session
key and stores the sequence numbers.

Message (1), (2) and (3) in fig. Rlare the message of the authentication scheme.

auth req (1)

Client AMnode

redirect

service
start req (5)

service
start res (6)

Authorization
Server

Fig. 2. The secure signaling scheme

Threat Analysis. If an implementor uses state-of-the-art encryption (e.g. RSA) and
hash function (e.g. SHALI) it is reasonable to assume that attacks on these will not be
successful. Other kinds of attacks must be analyzed in more detail: DoS attacks and
replay attacks.
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Since the programmable node only forwards authentication requests to the authen-
tication server without establishing any local state, the resistance against DoS attacks
solely depends on the address rewriting functionality. As shown in [4] our system can
handle simple UDP header manipulations in real time up to 100 Mbit/s. Therefore, the
authentication server might become a bottleneck if DoS attacks are launched at the
system. Since the authentication server checks the authenticity of any request, a flood-
ing attack might lead to CPU exhaustion of the server. No further real requests can be
handled at the authentication server, thus preventing the authentication of new users.
It is the intention of the design to sacrifice the authentication server in favor of the
programmable nodes. To limit DoS attacks during authentication, an additional cookie
exchange or installment of filters at the programmable node might further reduce the
impact of DoS attacks. Such filter installment and configuration is still a subject of our
research and is not further covered here.

The second type of attack is the replay attack. The attacker monitors the messages ex-
changed between client and programmable node, and replays these messages sometime
in the future. This attack can be prevented if the authentication server creates different
session keys for every request. An attacker gets a positive authentication response from
the authentication server but can not replay any further sniffed messages, because these
messages can not be authenticated. To prevent the attacker from replaying the authen-
tication request infinitely until the authentication server picks the same session key by
chance, a monitoring facility at the authentication server should log all authentications,
and might disable the authentication of users in case of such an attack for a limited time.

Authentication Result. All further communication between the client and the pro-
grammable network can be protected with the now established shared secret. Dur-
ing further communication, the sequence numbers are incremented by the sender and
checked by the respective recipient to be in increasing order. Any message with a
smaller sequence number is silently discarded. Afterwards the recipient checks the
authenticity of the message. If this check succeeds, the receiver stores the sequence
number of this message as the new lower boundary; otherwise the message is silently
discarded. This mechanism prevents replay attacks of sniffed messages. (We accept
that messages are discarded and have to be retransmitted with a new sequence number
if messages sent with correct sequence numbers got reordered during transmission.)

2.3 Authorization Scheme

After a successful authentication the client can request one or more services to be started
on the programmable net. The authorization server checks the access rights of the user
with respect to the requested service. As with the authentication server, the authorization
server can be a stand-alone server or be collocated with the service module repository.

The client creates an authorization request, uses the session key to generate a MAC
and appends the MAC to the message. Besides the user ID and the sequence number,
this request contains the service ID and the service parameters (if necessary). The mes-
sage is then sent to the authorization server indicated in the authentication response
(message (3) in fig. @). This server first checks the sequence number, then the MAC,
and finally processes the request, if all checks have succeeded.
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If the user is not allowed to start this service, an error notification is sent to the client,
indicating why the access was denied. Otherwise the authorization server informs the
programmable node that the service can be started (message (5) and (6) in fig.[2). After a
successful service startup on the programmable node, an authorization response is sent
to the client (message (7) in fig. B). This response carries any necessary information
to allow client to service communication: IP address of programmable node, id of the
service on that node, and two sequence numbers.

The client derives a new service session key for this service by using a hash function
with the authorization session key and the two new sequence numbers from the server as
arguments. To allow secure client to service communication, the corresponding session
state containing this session key, and the sequence numbers have to be transfered to
the programmable node, too. The server derives the service session key in the same
way and sends the key to the programmable node in an extra message, which can be
piggybacked to message (5). The client to service communication is protected using the
service session key and the sequence numbers. Section 2.4] shows how the keep-alive
messages are protected by this key.

Rekeying. The introduction of sequence numbers, to protect the communication be-
tween client and programmable node against replay attacks, makes a mechanism to
handle the wrapping of these sequence numbers necessary. As soon as a sequence num-
ber cannot be increased, new session keys must be requested from the authorization
server. Either the client sends an authorization request to the authorization server, as de-
scribed above, containing additionally the service dependent data to inform the server
for which service new session keys are requested or the programmable node sends a
rekey request containing the same data. The authorization server generates a new ses-
sion key and transfers this key plus the two new sequence numbers for this security
association to the client and the programmable node.

Threat Analysis. The authorization scheme is resistant against replay attacks through
the usage of sequence numbers. During authentication two sequence numbers have been
transferred to the client. The client uses the first one to authenticate messages sent to
the server, the other one to receive message from the server. As long as the session key
is known only to client and server, it is reasonable to assume that no attacker can create
a valid MAC for a message with a valid sequence number.

Including the IP address of the authorization in the authentication response informs
the client reliably to which authorization server the security association has been estab-
lished. This information assures the address of the authorization server to the client,
even if an attacker manipulated the unprotected IP header of the authentication re-
sponse.

Third, the scheme has a good resistance against DoS attacks. Using the first message
of the authorization scheme, the client must prove that it has access to the session key.
The authorization server first checks the authorization request, and only in case of a
valid request is the programmable node involved in the process. Again a DoS attack on
the system might bring down the server, but the programmable node is not disrupted.

The creation of session state on the programmable nodes is delayed, until the
client has proven access to the session key. This implies that session state on the
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programmable node is only created for actual running services on that node. As soon as
the service is stopped, the node can purge any service dependent data.

Authorization Result. The requested service has been set up on the programmable
node, and the user is informed that he can use the service. If client to service communi-
cation is supported by this service, all address information of the service is transferred to
the client. Depending on the service, reconfiguration requests and keep-alive messages
can be sent directly from client to the service instance.

2.4 Service Lifetime

To explicitly support roaming users, we propose a soft state approach for services on
programmable nodes. Since client to node communication can break down suddenly,
the client cannot always send a service stop request to the node. Service execution
and accounting of service usage must be stopped by other means. A service execution
based on a soft state approach enables the desired behavior, but requires the client to re-
fresh the state periodically. If no refreshment message reaches the node for a configured
amount of time, the service is stopped automatically.

The message to refresh the state of the service must be protected against manipula-
tion and replay attacks, too. The client uses the session key and sequence numbers to
generate this request and sends the request directly to the programmable node the ser-
vice is executed at. The mechanisms to check the message authenticity are performed,
as during the authorization.

3 Implementation

Within the FlexiNet project we have implemented an exemplary client signaling GUI,
the active node, and the service module repository. The authentication server and the
authorization server are both collocated with the service module repository. Every pro-
grammable node creates a TLS tunnel [6] to its configured service module repositories
during system startup. In contrast to the ordinary use of TLS, we demand mutual au-
thentication of the communication peers. A programmable node uses the TLS tunnel to
securely download service modules from the service module repository. Additionally,
we will use this tunnel to exchange service start request and response messages between
programmable nodes and the authorization server.

For user and machine identification we are using X.509 certificates, which carry
RSA keys for the signature generation and validation. As cryptographic hash functions,
HMAC/SHA1 are used in our extended signaling scheme.

This section details implementation issues of the message redirection mechanism,
which is followed by an example of our message format.

3.1 Redirection Mechanism

To filter signaling messages at a programmable node, a special service module — called
signaling filter module — must be installed. It is started during system startup and runs in
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a special environment — the so called framework execution environment. This environ-
ment, and thereby the signaling filter service, cannot be stopped by normal means. The
service is active as long as the programmable node is working. Furthermore, the signal-
ing filter service is the only service allowed to forward messages to the programmable
node’s framework. The main task of the framework is node management, which in-
cludes service setup and termination. The framework instantiates a new execution en-
vironment every time a new service gets started on the programmable node, and the
required service modules are loaded into this environment. If the required module is
not stored in the local module cache, the framework has to download that module from
the service module repository, via the established TLS tunnel.

The signaling filter service installs three network hooks during startup, in order to
filter UDP ports 5000, 5001, and 5002. While the hook on port 5000 is accepting all
bypassing traffic for any destination, the two other ports only accept messages directly
addressed to the node. In our implementation the client uses port 5000 to indirectly send
the authentication request to the programmable network. This allows for clients to dis-
cover a programmable node without knowledge about the network topology. The client
sends its signaling request towards the server, and if a programmable node is located
on the path between client and server, it will filter this signaling message. Addition-
ally, port 5001 is used by clients to directly signal the authentication request. All other
messages, like keep-alive requests, have to be sent to port 5002.

The messages, which a programmable node filters on port 5000 or 5001, will be redi-
rected, without any processing, to a connected service module repository. To achieve
this, the signaling filter service just has to replace the destination address in the UDP
packet and to recalculate the UDP checksum, if used. Thereby, no state has to be estab-
lished, and the node is protected against flooding attacks.

Any message filtered on port 5002 must be forwarded from the signaling service to
the local framework of the programmable node. Here the message gets re-instantiated,
and its signature is verified. Only messages authenticated with the session key are ac-
cepted at port 5002. All other messages get immediately discarded.

3.2 Signaling Message Format

In an abstract signaling class, three types of messages — request, response for syn-
chronous communication, and trap for asynchronous communication — and the basic
attributes of these signaling messages are defined. The basic attributes are : command,
group, msg-id, user-id, client and node sequence number. Every implementation of a
message must be derived from this abstract class and can add message dependent at-
tributes. Therefore, the implementation must assign a name and a type to the attribute,
and provide methods to get and set the attribute values.

Authentication Request. Fig. [3| shows a serialized authentication request, which al-
ways consists of two parts: a message part (line 02-07) and a signature part (line 08-10).

The command authenticate within the group Access denotes that a client
wants to authenticate itself to the system. The ID of the client is stated in attribute user-
id. The two sequence numbers are not used during authentication and are set to zero.
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01 <flexinet version="2.6"> <signaling>

02 <request client-seqg="0" command="authenticate" group="access"

03 msg-1d="42" node-seqg="0" user-id="client@flexinet.de">

04 <scalar name="ip-protocol" type="string"><string>udp</string></scalar>

05 <scalar name="udp-port" type="int"><int>5000</int></scalar>

06 <scalar name="ip-address" type="string"><string>192.168.0.1</string></scalar>
07 </request>

08 <signature algorithm="SHAlwithRSA" msg-id="42" user="client@flexinet.de">

09 UlQelz/9drf75zFA7JH18AWalz/VTzaFmsFIX6g1lWQYAEAWPtoXTM1d. . .

10 </signature>

11 </signaling> </flexinet>

Fig. 3. Authentication request message

The id attribute is used to bind a signature to a request. This binding is necessary if
multiple request, response, and trap messages are sent within a single signaling mes-
sage. Besides these basic attributes, an authentication request contains attributes like
the client’s IP address, port number, and the type of the transport protocol.

The signature part states the algorithm used to generate the signature, which is bound
to the message part with the same id. The signature is computed using the key of the
denoted user. In the example above, SHA1wi thRSA is used as the signature algorithm.
Since the object representation is unsuitable for signature generation, we have chosen
the canonical XML serialization as input to the signature algorithm.

01 <flexinet version="2.6"> <signaling>

02 <request client-seg="3749" command="start" group="service"

03 id="46" node-seqg="63953" user="client@flexinet.de">

04 <scalar name="ip-protocol" type="string"><string>udp</string></scalar>
05 <scalar name="udp-port" type="int"><int>5000</int></scalar>

06 <scalar name="ip-address" type="string"><string>192.168.0.1</string></scalar>
07 <scalar name="service-id" type="int"><int>23</int></scalar>

08 <scalar name="private-service-option" type="int"><int>3</int></scalar>
09 </request>

10 <signature algorithm="HMACSHAl" id="46" user="client@flexinet.de">

11 cvXzFkmém2uc2NypaQ8Tbsai5RE=

12 </signature>

13 </signaling> </flexinet>

Fig. 4. Authorization request message

Authorization Request. To start a service, the client sends an authorization request
(see fig. [ to the authorization server. The message part denotes the command start
within the service group (line 02). Sequence numbers and message id are set accord-
ing to the current client state (line 02-03). In addition to these basic attributes, the client
specifies the desired service using the service-id attribute (line 07) and service pa-
rameters using the private-service-option attribute (line 08). To receive an
authorization response the attributes ip-address, ip-protocol, and udp-port
(line 04-06) are set as in the authentication request.

The signature is generated using the HMAC-SHA1 algorithm and the shared secret.
Again the id binds this signature to the corresponding message part.
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4 Related Work

The related work can be divided into three categories: signaling protocols, general au-
thentication and authorization protocols, and authentication and authorization in pro-
grammable networking.

GIMPS [12] is a draft of a general signaling protocol. The authentication schemes
incorporated assume that the client knows his communication peer, which is not always
true for programmable networks.

In the area of general authentication and authorization protocols, many solutions
for different scenarios have been proposed. EAP [7] is an extensible authentication
protocol used for network access control. The protocol was designed to authenticate
a dial-in user to the network access server. A prerequisite of the protocol is that the
user authenticates himself towards the next hop, since EAP is a layer 2 protocol. This
behavior is not applicable to programmable networking, since the programmable node
might be multiple hops away from the user.

Kerberos [10] provides user authentication based on symmetric key algorithms. A
user authenticates himself via user name and password, and uses tickets to authenticate
himself towards the resources of the network. The drawback of Kerberos is that it can-
not support roaming users moving into a Kerberos domain. In our opinion, support of
wireless clients is essential for programmable networking.

Key exchange protocols always implement an authentication scheme, and addition-
ally solve the key distribution problem. TLS [6] is a TCP-based security protocol in-
cluding a key exchange. The modifications to the protocol, which would be necessary
to support indirect signaling, are non-trivial. Nonetheless, some basic mechanisms of
TLS, like server based key generation, are reused in our design. IKE [9] is another
key exchange protocol. It is based on UDP and fits many needs outlined, but the key
generation mechanism can only use the Diffie-Hellmann algorithm. Furthermore, the
complexity of the protocol is a known drawback of IKEv1, but might improve with
IKEv2, whose standardization should be completed in the near future.

Within the active and programmable networking area, only little research on secure
signaling has been introduced. Like in SARA [1]] an analysis of security aspects and
possible solutions are provided, but some forms of attacks have been neglected, like
DoS attacks on the active router. To verify a request in SARA, the active router must
first download the module from the code server and then verify the authenticity of the
request. An attacker can easily mount an DoS attack on the active router by requesting
different modules each time.

5 Conclusion and Future Work

We have presented a secure and scalable signaling scheme for user authentication, ser-
vice startup, and service management. The authentication scheme can be used for direct
and indirect signaling in the case, that the nearest programmable node is not known to
the client. The usage of asymmetric cryptographic algorithms is thereby limited to the
authentication process and all further messages are protected by cryptographic hash
functions. The presented signaling scheme resists active attackers and stems the threats
of denial of service attacks.
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A secure evaluation scheme and a secure service relocation scheme will be available

shortly and presented in the near future. These schemes will be build from the same
building blocks as the presented authentication and authorization scheme, keeping the
protocol complexity modest, and thereby lighten the analysis of the protocol.
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Abstract. Though the Internet succeeded to converge data and voice networks,
it itself is diverging now. The authors believe this derives from two facts; one is
the end of universal service era thanks to abundant communication services,
and the other the fusion of computers and communications because the speed of
networks is catching up that of computer’s internal bus. These facts allow us to
build networks proprietary for specific purposes such as sensor networks or web
services for e-commerce where computer and communication technologies are
tightly integrated. As a result, networks are becoming enormously complicated
and heterogeneous, and without our effort they will become uncontrollable. The
authors believe active network technologies were a good try, but it was not
enough. Theories build on solid mathematical basis is indispensable for the
analysis of huge systems, and we should try to build such theory. Complex sys-
tems theory provides various mathematical formulas such as ‘scale-free’, and it
can be a good starting point. We show as an example that by using self-
organization theory ubiquitous networks are considered indispensable for sys-
tem stability in future business network environment.

1 Introduction

The network is diverging again.

Convergence of various networks, data and voice networks in particular was a
dream of network engineers for many years. Huge amount of efforts such as ISDN or
ATM were made, and finally IP succeeded to grasp the Holy Grail. It succeeded to
integrate voice and data traffic. Layer three function, a function to identify a node in
network-wide manner and to deliver data to the node, has been unified with IP in
most important wired networks, and wireless networks will join when 4G mobile
communication service starts.

However, dividing and diverging of IP network itself are under way. As shown in
the end-to-end argument [1], IP networks was originally designed so that IP layer
functions would deliver packets from end to end, and each end host controls data
delivery by doing flow controls, retransmissions, or encryptions/decryptions. This is
not the case any more. Network Address Translators (NATSs) and virtual IP/virtual
server technologies used in load balancers have destroyed the uniform address space.
Firewalls have introduced application layer controls into IP packet flows, which make
it possible to interfere policies or intentions of organizations in data delivery. IETF
OPES WG enumerates various boxes possible to insert as an intermediary in the
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end-to-end loop [2]. One of them, TCP performance enhancement box [3], cuts off
the feedback loop of TCP flow control and tries to increase the performance without
the modification of end hosts. This is convenient for novice users, but this also means
that the performance of TCP/IP communications with my PC does not increase even
if I update the protocol stack of my PC.

Divergence of overlay networks on IP networks is even larger. There are many ap-
plication specific networks such as P2Ps, x-bones, intranets, extranets, and the web.
They have their proprietary address space and routing mechanisms. Some of them are
unicast, and some of them are multicast. Even the property of connections may differ:
connections between web sites, i.e., links, are unidirectional. Convergence of these
various networks seems impossible in the near future. And active network technolo-
gies have been trying to make divergence easier.

Why such things happened? We believe this derives from the abundance of excel-
lent networks. The abundance ended our desire for universal service, and we are now
on a new stage where differentiation is more important. The excellence of communi-
cation service is accelerating the fusion of computer world and communication world,
especially through the fact that the bandwidth of Ethernet is catching up with that of
computers’ internal bus.

The problem is, without our enormous effort this divergence would lead us to cha-
otic world where security breaches are common, root causes of failures or QoS degra-
dation are unresolved, and routing tables never converge.

This paper is organized as follows. We discuss the cause of the divergence, abun-
dance, in details in chapter 2, and excellence in chapter 3. Then in chapter 4 we pro-
pose to introduce knowledge from other areas to solve these issues. The theory of
scale-free from complexity system theory is introduced, and why ubiquitous network
is indispensable in future business network environment is explained using self-
organization theory. Chapter 5 concludes this paper.

2 Abundance of Communication Services

People believed for many years that telecommunication services were different from
other goods. Telecommunication carriers were considered as natural monopolies, and
in compensation of monopoly status they had the obligation to provide, and they
proudly provided, communication services universally [12]. The phrase ‘anytime,
anywhere, with anybody’ well speaks the ideal.

However, as communication technologies evolve, it became easier to provide
communication services. The precious service became common, and then abundant.
The carrier’s special status gradually diminished. Telecommunication carriers were
privatized, and market mechanism was introduced in many countries. The initial cost
to enter into the market decreased drastically. Startups provide public Wi-Fi infra-
structure in some cities today. A person who installs LAN in his house is not
very rare.

The necessity and the desire for universal service also diminished. Basic POTS
service is available at anywhere in many countries. Best-effort IP service can easily
be obtained, and it is not the target of universal service policy.
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Abundance brings us to a new stage of economy where important properties of the
industry differ, as Rostow claimed in [4]. The driving force of telecommunication
services, and network technologies as well, changed from public sectors to private
sectors. This changed the core competence from standardization and universality to
differentiation and customization.

In business sector communication services are tools to do business. They must be
optimized for business processes, and as long as the business requirements are
satisfied the service must be cheap as much as possible. This leads us to various cus-
tomizations. How a call should be transferred to the right personnel (is it OK for an
executive to answer a phone call to another executive if all secretaries are out of of-
fice)? Reliability is always preferable, but the acceptable cost differs. Authentication
for multicast clients is indispensable for applications of some companies, but is not
for others.

In consumer sector various customization also exists. “‘What sort of phone you
carry and how you customize it says a great deal about you, just as the choice of car
did for a previous generation’, wrote the Economist [5]. The market size of customiz-
ing ring tones was Y85b ($770m) in Japan in 2002, which occupies 0.8% of the all IT
sectors, and it will become Y150b ($1.4b) in 2007 [6]. In early days of short mails,
the sales of a mobile phone was three times larger than others, because it could use
heart mark [7]. The features of cameras (how many seconds of movies this mobile
phone can take and send?) are the current target of differentiation. These differentia-
tion and customization never ends because many people, young people in particular,
tries hard to single them out.

These differentiation and customization leads to a complex, diverged network
system.

3 Fusion of Computer World and Communication World

Link speed of networks is catching up that of computer’s internal bus. Such excellent
communication technologies are accelerating the fusion of computer world and com-
munication world, which is another driving force that makes networks complicated
and diverged.

Figure 1 shows the link speed of core telecommunication networks, networks that
connect supercomputer nodes, and Ethernet. We can see that the link speed increase
of networks is faster than that of supercomputers’, and today the difference between
supercomputer’s internal bus and Ethernet is only one digit.

This is also true for common PCs. Gigabit Ethernet has the same speed with
ordinary 32-bit PCI bus, and 10G-Ethernet is the same speed with PCI-X bus. Such
high-speed WAN links are expensive, but a little bit modest one, 100Mbps FTTH is
available at around $50/month in Japan and more than 1.4m customers are enjoying
them.

This will make distributed computing into reality where communication functions
and computer functions are tightly integrated. Technological reasons to distinguish
RPC and ordinary system calls are diminishing.
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Fig. 2. U-Japan plan (cited from Japanese Government’s white paper [4])

One example of distributed computing is various web services such as Amazon
Web Services (AWS) [8]. AWS provides an API to search Amazon’s bestsellers,
prices, customer reviews and related items by using SOAP or XML. The search result
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can be used to decorate ordinary people’s web sites, and enables them to sell Ama-
zon’s enormous kinds of goods on their web sites. Google provides a script that
searches personal web sites as far as their contents are reachable from Google, and
enables layman to use Google’s mighty search power. These are the killer applica-
tions in the distributed computing era.
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Fig. 3. Explosion of the number of status in future networks

Another example is ubiquitous computing. Japanese government is promoting
‘u-Japan (Ubiquitous Japan)’ [9] as the successor of e-Japan (a plan for an Internet-
ready society). It describes a society where various servers, sensors such as RFIDs are
connected to the network as shown in figure 2. We must solve various problems to
build such networks. Security and privacy problems pointed out in [9] are of course
important, but traditional problems such as routing also need to be solved. Figure 3 is
a rough estimation of the number of CPUs connected to the Internet and the link
speed between them, which shows that the number of connections between CPUs
explodes by a factor of 100 or 10000. Many nodes such as sensor nodes or PDAs will
not have enough processing power to calculate optimal routes, and servers must cal-
culate the routes on behalf of them. This means that it is difficult to apply clear end-
to-end model. Can we manage such a complicated large-scale network?

Current barrier that prevent such distributed computing is rather a social one, the
right of ownership. Network operators cannot use customer’s computing resources,
vice versa. Management policy differs among different organizations. However, secu-
rity threats are undermining this barrier. Cisco and IBM are cooperating to make
security policies interoperable to protect systems from raging malwares, which means
that 100% ownership is disappearing.
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4 Tackling the Complexity

Active network technologies have been trying to make network functions easier to
customize and to arrange by enabling dynamic program installation, by making man-
agement system more sophisticated and by introducing security mechanisms against
various threats. This matches the technological trends described above.

However, the authors fear that current active network technologies for solving
complexity and dynamically changing nature of future networks might not be enough.
We have developed various management systems, but were they enough if the num-
ber of nodes increased 10000 times because we had to consider sensor nodes and user
terminals? Can we track the route of a sensor data to check its integrity? Can we de-
tect the occurrence of security breaches in the network?

This is a challenging goal, and we believe theories build on solid mathematical
basis, an approach that traditional active network research did not focus on, is indis-
pensable for solving such issues of huge systems. Toward this end, mathematical
methods and formulas developed in different areas will help us. Complex systems
theory has a long history of research, and it provides various mathematical formulas
such as self-organization and ‘scale-free’ [10][11]. As an example to show the poten-
tial power of such mathematical formula, we show that if we apply self-organization
theories to future business environment, ubiquitous network is a must for system
stability [13].

4.1 The Theory of Scale-Free Networks

Scale means a typical number that characterizes the system (e.g., mean). Scale-free
systems such as fractal do not have such characteristic numbers (the mean becomes
zero or infinity). The theory of scale-free claims that we can find scale-free networks
in various areas, and it tries to explain the structure of World Wide Web, biochemical
reaction chains of proteins in cells, and even the social network that propagates AIDS.

Let us take WWW as an example. In the World Wide Web network, there are few
nodes such as Google or Yahoo that are linked from huge amount of nodes, while
most nodes are linked from only a few links. Nodes such as Google and Yahoo are
called ‘hubs’ or ‘connectors’, and play an important role in the networks. Figure 4
shows a typical image of such a network. You can see beautiful pictures of scale-free
networks in various areas at [15].

To be more precise, it is known that the distribution of the number of links that a
node has in the WWW network becomes power law distribution. If we denote the

number of links node v has as d ,» and the rank of node v as 7,, we can describe

v 9
the relationship between these two values as
a
d, e
where ( is a constant specific to the system.

This means that very few www nodes are linked from huge amount of nodes
(i.e. hubs), but most nodes are linked from only a few nodes.
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Fig. 4. A typical scale-free network (inspired by a figure in [16])

Barabasi [10] showed analytically that such network appears if we assume two
simple rules.

1. [Growth] a network grows by adding nodes one by one (the network does not
appear at a time as a result of careful planning).

2. [Preferential attachment] the probability that a new node connect to an existing
node is proportional to the number of links the existing node has (a famous node be-
comes even more famous).

Figure 5 shows the concept of such growth.

7

|

T}
AR | [

Fig. 5. Growth of a scale-free network (inspired by a figure in [11])

It has been proved that scale-free networks have many interesting properties.
Scale-free networks are very robust against random failures, but fragile to intentional
attacks [16]. They are also fragile to virus infection. According to percolation theory
there is a minimum size of infected nodes to occur an epidemic in random networks,
but in scale-free networks such threshold size does not exist [17]. Slight modification
of the two rules, i.e. by adding the initial attractiveness of each web sites, changes the
exponent a of the Zipf's law [18]. This shows a possibility to control networks by the
modification of ‘attractiveness’ of each nodes.
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There is an objection to this theory. Willinger [19] and Li [20] claim that preferen-
tial attachment is not the reason of IP networks’ power-law distribution. They claim
that the distribution is very common in complex systems because they are very ‘ro-
bust’ against various operations such as merging two groups, and it cannot be the
proof of preferential attachment. Moreover, IP network is carefully designed consid-
ering various technological constraints, e.g., core routers cannot have many links.
They conclude that Web network might be scale-free, but IP network is not. It is an
open issue to find which claim (or still other claim) is true, and to build a formula for
controlling networks on the findings.

4.2 Self-organization in the Future Business Environment

Now we would like to show that complex system theory such as self-organization can
be used to describe the condition of complicated network stability, using networks for
supply chain management (SCM) systems as an example.

SCM system builds a network among trade connections and by exchanging infor-
mation on stocks it optimizes the stock of each company as a whole. Such business
relations were stable and did not change very often in old days, but thanks to the
Internet it becomes possible to establish relations with companies all over the world
and change the trade connections for each trade.

Is this dynamically changing system stable?

Of course not, control theory tells us. The potential function of a system composed
of many nodes becomes very complicated, and a little perturbation can shift the sys-
tem to a new state, which often causes oscillation. We can see it as route flapping in
the Internet.

However, there are many complex, still stable systems. Why?

Complex system theory claims that self-organization mechanisms reduce the num-
ber of dominant nodes in the system, and thanks to this degeneracy the potential func-
tion becomes simple, and the system becomes stable. If Yahoo and Google, or
‘leader’ or ‘dominator’ dominates the system, it becomes stable.

This phenomenon can be explained as follows [14]. System behavior can be de-
scribed as a function of many parameters, each of which corresponds to each node.
The time constant of each parameter differs. If some time constants are much larger
than the others, the global behavior of the system can be described with these parame-
ters. The parameters with large time constants are called ‘order parameters’. This
occurs because the behavior of nodes with small time constants changes before it
affects the whole system, and its effect disperses. The behavior of these nodes can be
described as a function of that of large time constants.

This means that if the time constants of the order parameters decrease, all other
time constants must decrease to keep the system stable. If we would like to change a
system more frequently every node must respond faster to various changes. Nodes
require more sophisticated sensing system and communication tools to integrate the
collected information.

And yes, this is the current trend in business world. To keep SCM systems every
company are seriously working to respond more quickly to the changes of supply,
stock, the environment, etc. To achieve this goal companies give their employee smart
communication devices, and install various sensors in various places. The authors
believe this is the reason why we need ubiquitous networks.
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5 Conclusion

We showed that the requirements that active network technologies tried to solve, the
adaptation to network complexity and diversity, would become even more important
in the future networking environment. They derive from the abundance of communi-
cation devices and the fusion of computer and communication technologies, and cur-
rently we do not see any sign that this trend would end in the near future. We then
proposed to import knowledge from different areas, in particular complex systems
theory to obtain mathematical basis to solve complicated network problem, and ex-
plained the necessity of ubiquitous networks.

There are huge amount of things to do for network engineers. The theory of scale-
free is still in its infancy. It succeeded to describe and to explain various phenomena,
but it does not say anything on what we can, and how we can control them. The
explanation we made for ubiquitous networks is just a qualitative, introductory one,
and more precise description is necessary to construct stable networks. We must go a
long way to describe, explain and control various features of the Internet with this
framework.
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Abstract. Recently the content distribution networks (CDNs) are high-
lighted as the new network paradigm which can improve latency for Web
access. In CDNs, the content location strategy and request routing tech-
niques are important technical issues. Both of them should be used in
an integrated manner in general, but CDN performance applying both
these technologies has not been evaluated in detail. In this paper, we
investigate effect of integration of these techniques. For request routing,
we focus on a request routing technique applied active network tech-
nology, Active Anycast, which improves both network delay and server
processing delay. For content distribution technology, we propose a new
strategy, Popularity-Probability, whose aim corresponds with that of Ac-
tive Anycast. Performance evaluation results show that integration of
Active Anycast and Popularity-Probability provides robust CDNs.

Keywords: Content distribution networks, content location strategy,
request routing.

1 Introduction

In the Internet, several types of services use replicated servers which are geo-
graphically dispersed across the whole network. One typical example of this type
of service is content distribution network (CDN)[I]. The aim of this approach is
to prevent too many accesses from concentrating at a particular server, which
causes degradation of response time of a server itself and congestion in the net-
work around that server. In content distribution networks, the request routing
[21[3] and content location techniques[]-[7] are important technical problems.
Both technologies should be used in an integrated manner in general, but CDN
performance applying both of these technologies has not been evaluated in detail.
In this paper, we investigate effect of integration of these techniques.

When a client would like to select a good (replication) server to obtain a
object, one transparent way is making use of DNS|8][J]. In this approach, a DNS
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server has a list of servers and returns a selected server’s IP address. Round
robin selection is generally used, which cannot take account of server’s location
and load. An Anycast server selection is more sophisticated way of guiding a
client’s request to one of many hosts[I0][TT][12]. A packet destined for an Anycast
address will be delivered to one of the hosts with Anycast address, ideally the
closest one from the client. This Anycast technology only takes the distance
between client and server into consideration. To select the optimal server which
gives the smallest response time, server load is also an important factor to be
considered. As one of possible way to resolve these server selection problems,
we have proposed “Active Anycast” [13]. In Active Anycast, when a user request
arrives at an active router, this active router selects an adequate server and
directs this request to the selected server.

In content location strategy, the optimization problem is defined as repli-
cating objects so that the average number of hops traversed is minimized when
clients fetch objects from the nearest content server containing the requested ob-
ject. This optimization problem is NP-complete[d]. Kangasharju et.al.[4] propose
three heuristics (Popularity, Greedy-Single, Greedy-Global) for this optimization
problem. These algorithms are designed for the object to be replicated so that
the average number of hops traversed is minimized in the base of the assumption
that Anycast is used for request routing.

In this paper, we claim that there is significant difference between aims of
content location strategy and request routing. And we claim that these aims
should be correspond. When Active Anycast is used for request routing, a user
request has a tendency to be guided so that servers inside a network are effec-
tively used. Thus, when request routing guides a user request intelligently so
that load of servers to be balanced, content location strategy should work well
together with this strategy. From these observation, we propose a new content
location strategy, Popularity-Probability. In Popularity- Probability, objects are
randomly located in replicated servers inside a network according to its popular-
ity. It has a quite simple operation, i.e. a specific object is located in a content
server with the probability which are given from its relative popularity. By this
simple operation, objects are randomly located inside a network and an object
with high popularity has larger number of copies inside a network than lower-
popularity objects. With Active Anycast strategy, this content location strategy
will provide good performance to CDNs. Performance evaluation in the paper
will show that our proposed integration of request routing and content location
strategy in CDN will open a new possible network design, the robust CDN.

Remainder of the paper is structured as follows. Section 2 describes about re-
quest routing technology and introduces Anycast and Active Anycast. Section 3
explains about previously published content location strategies in detail. Section
4 claims necessity of robust CDN and proposes a new integration of request rout-
ing and content location strategy, i.e. Active Anycast and Popularity-Probability.
Section 5 shows simulation results which investigate effectiveness of our proposed
integration. Section 6 concludes the paper.
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2 Request Routing

In the content distribution networks, to effectively respond to requests in a rea-
sonable amount of time, the load must be distributed across multiple servers. Re-
quest routing is the technique which directs user requests to an adequate server
from the viewpoint of improving latency in obtaining objects. URL approach is
the simplest one and some modifications of them have been proposed[3]. This
approach assumes request routing decision is made at client side, so it can be
categorized into end-to-end approach. In the paper, we focus on network support
approach which makes use of active network technology. As a network support
approach, we explain about Anycast and Active Anycast, in detail.

2.1 Anycast

In Anycast technology, an Anycast address can indicate a group of servers offer-
ing the same service[I0][I1][I2]. A router which receives an IP datagram whose
destination address field includes an Anycast address forwards this datagram to
an output link on the path to the nearest server. The Anycast technology can
be used for selection of the closest server without an end-user’s knowing where
it is.

2.2 Active Anycast

As a request routing, we have proposed Active Anycast[I3]. In Active Anycast,
a router in the network autonomously distributes accesses from clients ade-
quately to geographically dispersed servers. The Active Anycast is based on
Anycast[10][IT][12] and active network technology[I5][16].

In Active Anycast, a TCP connection which is initiated by the client is au-
tonomously set up to an adequate server by an active router. When the client
has a request to the server, it sends a name resolution query to the Domain
Name System (DNS) and gets a resolved Anycast address (Step 1. in Fig.1).
This Anycast address indicates a group of replicated servers (including an origi-
nal server) which offer the same service. The initiating host sends a SYN packet
whose destination address field indicates Anycast address (Step 2). The SYN
packet is forwarded to an output link on the path to the closest server when it
arrives at a conventional Anycast router (Step 3). When the SYN packet with
the Anycast address arrives at an active router, it chooses an adequate server
from all the candidate servers of the corresponding service based on the informa-
tion and the policy of server selection. And this router changes the destination
address of this SYN packet to the unicast address of the selected server (Step 4).
Subsequently, the SYN packet is forwarded to the selected server as conventional
unicast forwarding (Step 5). When the server receives this SYN packet, it replies
an ACK+SYN packet (Step 7). And the client sends an ACK packet after it re-
ceives an ACK+SYN packet, which means establishment of the TCP connection
(Step 8). After that, the ordinary information exchange phase is started between
the server and the initiating client (Step 9).
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2.3 Active Anycast Server Selection

In [14], the way that an active router collects information necessary for server
selection has been proposed. An active router is assumed to measure round trip
time (RTT) of a request packet and its response packet as shown in Fig[2and use
this RTT for server selection. This measured RTT includes both of the network
delay and the server processing delay, so an active router can select a good server
from the viewpoint of both of network delay and server load. For the server
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selection policy, a probabilistic server selection policy in which a router selects
the server according to a probabilistic manner is applied. The probability of
server selection is calculated taking account the RTT between client and servers.
When the RTT is large, selection probability should be small. This probabilistic
selection prevents synchronized behavior of server selection. We apply a following
simple method for calculation of the server selection probability. An active router
i calculates F;;, a probability of selecting server j, as follows.

1
RTT; (1)

Y=t RTT,
m=1 RTT,,

where n is total number of servers serving the same service and RTT,, is the
RTT between the router ¢ and the server m.

P, =

3 Content Location Strategies

For content location strategies, several works have been published. Cidon et al.[5]
and Li et al.[6] discuss content location problem for simple network model, a tree
model. These results cannot be applied for general case where many replication
servers are located in the whole network and their decision affects each other,
i.e. their decision of which objects to be located affects total performance. Qui
et al.[7] evaluates several content location strategies by simulation. In their eval-
uation, replication server is assumed to be complete and they do not consider
behavior of each content. In [4], content location problem is well formulated and
they analyze which object to be located in each replication server.

In [], content location problem is formulated as follows. Content server i in
autonomous system (i=1,2,...,I), ASi, has S; bytes of storage capacity. Object
j has a size of bj;,j € {1,2,...,J} and a request probability P;which is the
probability that a client will request this object j. ASi has clients that request
objects at aggregate rate )\;.

S 1 if content j is stored at content server 4
710 otherwise

The matrix of all x;;’s is denoted by x. Each object j is initially placed on
an origin server. All of the objects are always available in their origin servers,
regardless of the placement x. The placement of objects to origin servers is
denoted as x,.

The storage is constrained by the space available at ASi, that is

J
ijxingi 7;:17“-,[. (2)
j=1
The average number of hops that a request must traverse from ASi is
J
Ci(x) = pjdij(x) (3)
j=1

where d;;(x) is the shortest distance to a copy of object j from AS ¢ under the
placement x.
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Let /1(22{21 Ai) be the total request rate of all ASs. The average number of
hops from all ASs is then

1 I 1 I J
C(X) = AZ)\ZCZ(X) = AZZ)\Zp]d”(X) (4)

i=1 j=1

The goal is to choose the x so that the cost function C'(x) is minimized.
This means that the goal is to minimize the average number of inter-AS hops
that a request must traverse. It is not feasible to solve this problem optimally
for a large number of objects and ASs. This problem is NP-complete[d]. They
proposed several heuristics to solve this problem as follows[4].

3.1 Popularity

Content server in the each AS stores the most popular objects. The content
server sorts the objects in decreasing order of popularity and stores as many
copies in this order as the storage constraint allows. The content server can
estimate the popularities by observing the requests it receives from the clients.
This heuristic does not require the node to get any information from outside of
the AS.

3.2 Greedy-Single
Each AS: calculates

Cij :pjdij(xo) (ZE 172a"'717j6 172a"'7‘]) (5)

Original Server A Original Server B Original Server C

|:| -+« content
... AS
Content Server D Content Server E Content Server F

dpj| Dj |dop#p| | J |dgi| Pi \deei| | ] |dFi| P |deops
210.1]0.2 a|410.104 a|610.10.6

J
a
b|3103/09 | |b|1]03]03 ]| ]3]03]09
e | 50.63.0% |3 ]0.6]L8% [ | 1]0.6/0.6

The content ¢ is The content ¢ is The content b is
replicated in server D) | replicated in server E) | replicated in server F

This operation is iterated until each storage has been filled

Fig. 3. Greedy-Single
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[]-- content

-+ AS
Step| Content Server D Content Server E Content Server F
J |dpj| Pildo| | J |dei| Pi|dewi| | j |dE| P |de
a|210.1/0.2 a|410.1104 a|6/0.10.6
1 b |310.3(0.9 b|1]0.3]0.3 b |3]0.3]0.9
c [ 5]0.6[3.0% | c| 30618 |c|1]0.606
The content c is replicated in server D
P
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The content b is replicated in server D
This operation is iterated until all the stoages have been filled

Fig. 4. Greedy-Global

The AS then sorts the objects in decreasing order of C;; and stores as many
copies in this order as the storage constraint allows. The popularities are obtained
as in the Popularity heuristics, but the CDN also needs information about the
network topology in order to estimate the d;;’s. Note that the C;;’s are calculated
only once under the placement xy and not adjusted when copies are stored in
the content server. This means that every AS stores copies independently of all
the other ASs and no cooperation between ASs is required (FigB).

3.3 Greedy-Global

The CDN first calculates Cj; = \;p;di;j(xo) for all AS ¢ and objects j. Then
the CDN picks the AS-object-pair which has the highest C;j; and stores that
copy in that content server. This results in a new placement x;3. Then the CDN
recalculates the costs Cj; under the new placement and pick the AS-object-pair
that has the highest cost. The copy of that object is stored in the content server
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in that AS and a new placement x5 is obtained. This operation is iterated until
all the storages have been filled (Fig]).

Cij:Aipjdij(X) (iE1,27~~~7I7j€1,27~“7j) (6)

4 Popularity-Probability

Popularity, Greedy-Single and Greedy-Global have the goal that objects are dis-
tributed to the content servers so that the total delay from each AS is minimized.
These content location strategy is designed for a request routing which directs
a users request to the closest server. So, they are designed for Anycast routing.
When more sophisticated request routing technique, such as Active Anycast, is
used, content location strategy for Anycast, e.g. Greedy-Global, may not work
well. This is because of difference between aims of content location strategy and
request routing. Aim of request routing of Active Anycast is to find a good server
which gives optimal response time. This means Active Anycast can direct a user’s
access to a good server of light load even though this server is not the closest
one. Thus, for content location strategy, it is not the most important requirement
that requested objects are located close to users (of course, this does not mean
it is not important). It is rather important that network has adequate amount
of (the same) objects for a popular one. From these observation, we propose a
new content location strategy which is applicable to Active Anycast-type request
routing, i.e. request routing taking care both of network delay and server load,
Popularity-Probability.

In Popularity-Probability content location strategy, each content server de-
cides its storing objects according to object popularity. From the meaning that
object popularity is a key factor of content location, Popularity and Popularity-
Probability has the similar concept. However, in Popularity-Probability, content
server decides whether it stores a specific object or not with probability which
is predefined by its popularity. When the total number of content servers in a
network is IV and request probability of object i is p;, expected number of con-
tent servers which store content ¢ is Np;. This means content are distributed
randomly in a network so that the number of replicated content in a network is
linear to its popularity. In Popularity-Probability, each content server can decide
its storing objects independently and there is no necessity to exchange any infor-
mation among servers. So, Popularity-Probability is very easy to be implemented.

5 Performance Evaluation

In this section, we evaluate the performance of the combination of the content
location strategy and request routing technologies by computer simulation, and
investigate the environment where each technology works effectively. In that
evaluation, Popularity, Greedy-Single, Greedy-Global and Popularity- Probability
are applied as a content location technology. For request routing technology,
Anycast and Active Anycast is applied.
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5.1 Performance of Request Routing and Content Location

To investigate territory where each content location and request routing tech-
nology works effectively, we investigate the average delay of obtaining objects
with various percentage of ASs where the content servers are located. We make
the following assumptions.

— The network model of the random graph with 100 ASs is used. Each AS has
a router and at most one content server.

— The link capacity between any nodes is 25.0 requests/sec.

— The server is modeled as M/M/1 queueing model with capacity of 1.0 re-
quests/sec.

— Accesses to servers are generated by Poisson process. The access arrival rate
indicates aggregate access arrival rate to each router from users connected
directly to it and is 30.0 requests/sec.

— The number of contents stored in the content server is 10% of all 100 objects,
i.e. capacity of each server is 10 copies.

Figure Bl shows the average latency of obtaining objects vs. the percentage
of the number of ASs which have a content server in the network. A solid line
and a dotted line show latency of obtaining objects with Anycast and Active
Anycast, respectively. As shown in this figure, with any combination of request
routing technology and content location strategy there is some area that delay
characteristics diverges. This is because utilization of servers inside a network
becomes larger than 1, i.e. servers are in overload status when sufficient number
of content servers are not prepared in a network. However, the percentile of AS’s,
i.e. the number of content servers, which gives delay divergence is varied for each
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combination. Popularity-Probability and Active Anycast combination gives the
smallest value of this divergence point. This means this combination needs the
smallest number of content servers in order to stabilize delay characteristics.
Thus, combination of Popularity-Probability and Active Anycast can distribute
adequate number of contents inside a network and guide users request with
satisfying server load balance.

We also evaluated the performance in the case where the server capacity is
30%. Simulation results for this case show that there is no significant difference
between the results for 10% case. As the server capacity becomes larger, the total
performance of CDN is improved, of course. However, tendency that combina-
tion of Popularity-Probability and Active Anycast needs the smallest number of
content servers in order stabilize delay characteristics.
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Fig. 6. Performance in the case where the popularity changes in 10 ASs

5.2 Simulation Results: Robustness

Another important performance for CDN is robustness. For content location
strategy, e.g. Popularity and Popularity-Probability, measured or predefined in-
formation about popularity of object is necessary. When there is some error on
its estimation or temporal change of popularity, there may be some performance
degradation in CDN. We evaluate robustness from the viewpoint that how av-
erage latency characteristics are degraded with these errors. In this paper, we
investigate the effect on the integration of request routing and content location
in the case where the request probability of the objects p; change from the
original design. It is modeled as the situation where the request probability of
most popular object is replaced with the request probability of m’th (m > 2)
popular object. When the contents are sorted in decreasing order of popularity, it
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is assumed that the request probability of most popular object is p; and m’th
popular object is p,, originally. Each request probability pi, p,, become as follows
after change.

P1=Pm, Pm =D1
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The x-axis shows the object number m to be replaced and y-axis shows the
latency of obtaining objects in Figltl [[] and B Figures B [ and [ show the
performance in the case where the popularity of objects changes in 10%, 50%
and 100% of all ASs in the network, respectively. Active Anycast is used as
request routing in above all figures.

As shown in these figures, combination of Popularity-Probability and Active
Anycast gives the best performance from the viewpoint of robustness because it
can hold stable delay characteristics even with large error happens in popularity
pre-estimation.

6 Conclusion

In this paper, we have claimed that there is significant difference between aims of
content location strategy and request routing. Aim of request routing of Active
Anycast is to find a good server which gives optimal response time. Thus, for con-
tent location strategy, it is not the most important requirement that requested
objects are located close to users. We thought that request routing and content
location strategy works well together when content location strategy is aim to
manage the number of objects according to their popularity. From these observa-
tion, we have proposed a new content location strategy, Popularity-Probability.
In Popularity-Probability, objects are randomly located in content servers inside
a network according to its popularity. In Popularity-Probability, each content
server can decide its storing copies independently and there is no necessity to
exchange any information among servers.

We have evaluated our proposed integration of request routing and content
location strategy, i.e. combination of Active Anycast and Popularity-Probability.
We compare the average latency of obtaining objects in our proposed integra-
tion with the various combinations of previously proposed request routing tech-
niques: Anycast and Active Anycast, and content location strategies, Popularity,
Greedy-Single and Greedy-Global. Our simulation results show that our pro-
posed integration gives robust CDN in the meaning that CDN is tolerable to
change of user request tendency. Our proposed integration of request routing
and content location strategy in CDN will open a new possible network design,
the robust CDN.

In our evaluation in this paper, we assume link capacities of all links are
homogeneous. For content servers, we think their network situation should be
good, i.e. their available bandwidth should be large. This is because these content
servers will be prepared by network carriers or service providers. Thus, we believe
that insights obtained in the paper can be applied to general CDNs. In the case
that link capacity of each content server is different, content location strategy
should take into account not only popularity of contents but also server’s network
situation. For example, popular contents should be located at a server with good
network situation. We would like to leave this issue for our further research.
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Abstract. Active Networking embodies rapid development and deploy-
ment of new services. A network service typically consists of two or more
cooperating protocols. In this paper, we describe a case study applying
a composite protocol framework to developing a multicast network ser-
vice. The composite protocol framework provides a rigorous mechanism
to check protocol behavior before deployment. Our multicast serviced in-
corporates protocols for multicast routing, creation of spanning trees, re-
liable replication of multicast data and joining/leaving multicast groups.
These protocols are built from re-usable components and communicate
by means of global memory.

Keywords: Active networks, protocol components, composite protocols,
composable services.

1 Introduction

In an active network [1], routers and switches in the network are programmable
by the user and are capable of performing customized computations on packets
passing through them. This allows easy injection of customized and innova-
tive protocols and services into the network without the need for network-wide
standardization. Several active networking architectures have been developed to
deploy services need by an application on intermediate nodes of the network.
Active networking is built on the concept that many people will design, build,
and deploy new protocols and services in the network. There is valid concern that
network reliability is a risk if just anyone can place code in the network. One part
of the effort to protect the network is insuring that new services are well thought-
out, reasoned about, and tested before deployment. Composite Protocols [2] is
a modular approach for specifying and implementing network protocols and
services. In this paper, we present a case study of applying Composite Protocols
to a multicast service.
* This research was supported by the Defense Advanced Research Projects Agency
and the U.S. Air Force Research Laboratory under contract F30602-99-2-0516.
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Reliable-delivery, sequential delivery, error checking, some form of routing,
authentication, and request/reply are some of the common functions used in
protocols. Any new protocol may also use of some of these functions. We call
such single-functional protocol modules, protocol components. A group of such
protocol components collected and connected together by means of a composition
operator constitutes a protocol. For example, Time-To-Live (TTL), Fragmenta-
tion, Header Checksum, Forwarding, and Addressing are protocol components,
which contribute to the IP protocol. Though many forms of composition exist,
the most common form of composition and the one used in our implementation
is a linear composition.

A collection of two or more cooperating protocols is called a service. Multi-
cast is an example of such a service. Multicast consists of protocols for group
membership and management, multicast routing and spanning trees, tunneling
and reliable replication of multicast data. Our composite protocol framework [2]
describes how protocol components are specified and how these protocol com-
ponents are composed to form a composite protocol.

1.1 Multicast Service

Traditional IP-based multicast network services typically consist of multicast
routing protocols like DVMRP, MOSPF or PIM and group-management pro-
tocols like IGMP in operation. In this paper, we describe how a component
based multicast service is built by stacking protocol components into three dif-
ferent protocol stacks: (1) a DVMRP like multicast routing stack for creating
and managing multicast routing tables and spanning trees, (2) an IGMP like
group-management stack for managing group-memberships and (3) a multicast-
traffic delivery stack for reliable and secure transmission of application data. We
then describe how these protocols communicate among themselves using a global
memory object.

The rest of this paper is organized as follows. Section 2 describes the vari-
ous steps involved in building a composable service using our framework with
multicast service as a case study. Section 3 briefly discusses the functionality
of all the protocol components that constitute the service and illustrates how
the stacks cooperate together to render the multicast service. Section 4 focuses
on Inter-stack communication, its need and forms of representation. Section 5
summarizes the results and presents the conclusion.

2 Building a Composite Multicast Service

Multicast is an excellent example of a network service which is made up of several
cooperating protocols. IP Multicast is a collection of multicast routing protocols
like DVMRP, MOSPF, PIM and group management protocols like IGMP work-
ing in tandem with IP for best-effort multicast delivery. The reason for studying
multicast service is that it combines data and control-oriented protocols. TCP
and IP are data-oriented protocols, while routing protocols like RIP, OSPF,
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DVMRP and group-management protocols like IGMP are control oriented (be-
long to the control-plane). It should be noted that protocol components that we
specify and implement are not complete implementations of Internet standards
for DVRMP (3], IGMPv1 [4], and IGMPv2 [5]. We are interested is the basic
functionality in these protocols and evaluation of the composite protocol frame-
work. Only a sub-set of the standard functionality is specified and implemented.
We assume that the reader has a basic understanding how IP multicast and
other protocols like DVMRP and IGMP work in general.

2.1 Building a Composite Service

Step 1: Decomposition - Identify components from the monolithic
protocols in the service.

For multicast service, we decomposed the monolithic DVMRP [4] protocol into
the following protocol components: Neighbor Discovery, Route Exchange, Span-
ning Tree, Pruning and Grafting. The IGMP [5] protocol is decomposed into
the following components: Join/Leave and Query/Report. Other components in-
clude Multicast Forwarding, Reliable Multicast (ACK/NACK based), Security
(Authentication / Encryption). Figure 1 illustrates these stacks.

Multicast Routing
Stack .
Multicast Data
Neighbor Discovery Stack
Route Exchange Application
Spanning Tree Group Management MCast Forward
Pruning Stack Reliable
Grafting Join_Leave Encrypt
Forward Forward Forward
TTL TTL TTL
Fragment Fragment Fragment
Checksum Checksum Checksum

Fig. 1. Multicast service is a collection of three stacks viz. Multicast routing stack,
Group Management stack and Multicast data/traffic stack. Multicast service is a col-
lection of three stacks viz. Multicast routing stack, Group Management stack and
Multicast data/traffic stack.
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Step 2: Specification of protocol components.

Once the individual components are identified, the next step is to specify each
of these components using Asynchronous Finite State Machines (AFSM) [6]
as described in [2]. Each component is represented by a Transmit State Ma-
chine (TSM) and a Receiver State Machine (RSM), the set of events (data and
control) that can invoke this component, its memory requirements: local, stack-
local, global and packet memory along with its properties and assumptions. The
individual functionality of each protocol component is described later. While
specifying these components, care should be taken to ensure that each protocol
component performs only a single-function and is totally independent of other
components. Achieving total independence is only an ideal case. In practice, some
minor amount of dependence on other protocol components may be required.
We shall describe on the individual functionality of each protocol component in
section 3.

Step 3: Building Protocol Stacks.
Once all the individual protocol components are specified, these are grouped into
protocol stacks. The multicast service is the collection of these stacks.

Step 4: Deployment - Placing the stacks in the network.
Composite-protocol stacks are deployed in an Active Network.

Core Router
v
@ Leaf Router

B Host

53 1

Q

0

Multicast Routing Group Management Multicast Data
ﬁ Stack O Stack O Stack

Fig. 2. An example multicast network showing core routers, leaf routers, and hosts.
The shapes indicate where each protocol stack is deployed in the network.
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Figure 2 shows an example multicast network with the following types of
nodes:

— Multicast Sender: sends multicast data destined for a particular group. Need
not be a part of a multicast group to send a multicast packet. Typically
attached to a multicast core-router.

— Multicast Core Router: present in the core of the multicast network. They are
responsible for creating and managing multicast routing tables and setting
up per source, group multicast delivery trees.

— Multicast Leaf Router: these are nodes that do not have downstream neigh-
bors and are directly attached to multicast receivers (end-hosts).

— Multicast Receivers: these are end-hosts that have joined a particular group
and are entitled to receive multicast traffic destined to that particular group.

Note that both Multicast core routers and Multicast Leaf routers can also be
Multicast Receivers and Multicast Senders.

3 Component Description

This section contains a brief description of each component in the multicast
service. Detailed state machine specifications for each component are beyond
the scope of this paper [8]. For each component, its sender (TSM) and receiver
(RSM) functionality, access to global memory data structures and dependencies
on other components are briefly discussed. We start with components from the
multicast routing stack first.

3.1 Neighbor Discovery

This component forms a part of the multicast routing stack deployed at multicast
core and leaf routers. The main functionality of this component is to dynamically
discover neighbors (multicast routers) on all its interfaces. The sender side of this
component periodically broadcasts probe packets (hello packets) on all multicast-
enabled interfaces. Each probe packet sent on a particular interface contains a
list of neighbors for which neighbor probe messages have been received on that
interface. The receiver side of this component first checks if the neighbor probe
packet is received on one of its locally defined interfaces and if yes, updates in
its local memory: the neighbor address and the interface on which it is received.
It then checks for 2-way adjacency i.e. if the local interface address is present
in the neighbor list of the probe packet. If present, then a 2-way adjacency is
established and neighbor is discovered on that interface. This information is
written into and maintained in a global data structure called Neighbor Table,
which is part of Global Memory. It also provides a keep-alive function in order
to quickly detect neighbor loss. Timers are used for sending probe packets and
also for detecting dead neighbors. This component can be used in other protocols
where there is a need for neighbor discovery e.g. in unicast routing protocols like
RIP and OSPF.
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3.2 Route Exchange

This component forms a part of the multicast routing stack deployed at all
multicast core and leaf routers. The main functionality of this component is
to dynamically create and maintain the routing tables at the multicast routers
through periodic exchange of route exchange packets with neighbors. This is a
RIP-like protocol component, with metric based on hop-counts. The sender side
of this component periodically sends route exchange packets to all its neighbors.
The list of neighbors is read from the global memory Neighbor Table. Each route
exchange packet contains a list of routes with each route comprised of a network
prefix, mask and metric. For each route exchange packet received, the receiver
first checks with its local route cache if the received route is a new route or
not. If new then the route is stored in the local route cache. If not, then the
received metric for the route is compared with the existing metric after adding
the cost of the incoming interface to the received metric. If the resultant metric
is better than the existing one, then the local route cache is updated. After
all the received routes are processed, the contents of the local route cache are
written to a global data structure Routing Table in global memory. The Routing
Table contains entries of the form prefix, mask, metric, next-hop. Timers are
used for the periodic transmission of route exchange packets. This component
can be re-used in other distance vector-based unicast routing protocols like RIP.

3.3 Spanning Tree

In DVMRP, the poison reverse functionality and creation of spanning trees is
embedded as part of the route exchange process itself. Here the functionality is
built into a separate component. This component enables each upstream router
to form a list of dependent downstream routers for a particular multicast source.
Each downstream router informs its upstream router that it depends on it to
receive multicast packets from a particular source. This is done through periodic
exchange of Poison Reverse packets. The sender side of this component needs
access to the global Neighbor Table and Routing Table. The entries in the Routing
Table are grouped based on next-hop information. All prefixes having the same
next-hop are grouped together in different lists called poison reverse lists. Each of
these lists is sent to their corresponding next-hops (which are actually upstream
neighbors for the source networks in the list). The receiver side (the upstream
neighbor) uses all the poison reverse lists it receives to form a spanning tree
for each source. Thus, this component builds a list of downstream dependent
neighbors for each source network. The tree is stored as global data structure
Spanning Tree.

3.4 Group Membership/Join Leave

This component forms a part of the group management stack deployed at mul-
ticast leaf routers and end-hosts. Initially, the IGMP protocol was decomposed
into two separate components: Join Leave and Query Report. But the Join Leave
component did not fully satisfy our definition of a protocol component. Its TSM
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did not send packets on the wire and it had no RSM functionality. So, these were
merged into a single component called Group Membership. Another interesting
feature about this component is that it is asymmetric in nature. The TSM and
RSM functionality differs depending on where the component is deployed at the
end-host or at the leaf multicast router. So, in order to make the state machines
symmetric both the state machines contain exclusive transitions for end-hosts
and routers. At the end-host: The TSM responds to Control events EJoin and
ELeave (These events are generated by the application when the host wants to
join or leave a particular multicast group). It also updates the local group cache
when these events occur. The RSM responds to the Query packets from the leaf-
router by sending back a Report packet containing the list of group addresses
it belongs to. At the multicast-leaf router: The TSM periodically multicasts
Query packets on the local network to the “all-hosts-group” and the RSM pro-
cesses the Report packets received from its attached hosts and updates the local
group cache and the global memory structure Group Members Table. It should
be noted that the component at the end-host is initialized “actively” and that at
the router “passively ” through EActivelnit and EPassivelnit events respectively.
This component thus creates and maintains the Group Members Table structure
in global memory. Each multicast router contains in its Group Members Table
the list of group addresses to which its attached hosts have joined.

3.5 Pruning

This component forms a part of the multicast routing stack deployed at multicast
leaf and core routers. The primary purpose of this component is to create and
maintain the global data structure Prune Table that stores the list of pruned
downstream interfaces for each source/group pair. This along with the Spanning
Tree component constructs per source-group multicast trees at each node. (Note:
the Spanning Tree component by itself constructs a per-source broadcast tree
at each node). The sender side of this component is responsible for sending
prune packets for a particular source-group pair addressed to the corresponding
upstream neighbor under the following conditions:

1. If all its downstream dependent neighbors have sent prunes and all its IGMP
interfaces are also pruned.

2. If all its downstream dependent neighbors have sent prunes and there are no
IGMP interfaces (at multicast core routers).

3. If there are no downstream dependent neighbors and all IGMP interfaces
are pruned (at multicast leaf routers).

The receiver side of this component is responsible for updating the global
memory Prune Table with entries containing source, group and incoming inter-
face (interface to be pruned). Note that the TSM reads from the Prune Table and
the RSM writes to the Prune Table. Components from other stacks also write to
the Prune Table. The Multicast Forwarding component writes to this structure
when there are no members for the source-group present in all attached host
interfaces. The Join Leave component (router side) of the group membership
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stack also writes into this structure when a last member of a particular group
leaves a multicast group. Thus this design of this component addresses some
intra-stack communication issues. The global memory Prune Table is used here
to communicate between the two stacks. These issues are discussed further in
section 4.

3.6 Grafting

This component also forms a part of the multicast routing stack deployed at
multicast core and leaf routers. This component is responsible for removing the
appropriate pruned branches of the multicast tree when a host rejoins a multicast
group. When a group join occurs for a group that the router has previously sent
a prune, the global Prune Table is updated by the Join Leave component to
un-prune the local IGMP interface for that particular group. The sender side
of this component reads from the global Prune Table, and sends a separate
graft packet to appropriate upstream routers for each source network under the
following conditions:

1. On leaf-routers if the interface attached to all hosts is un-pruned.
2. On core routers if a graft packet is received on all previously pruned down-
stream interfaces.

The receiver side of this component on receiving a graft packet writes to the
global Prune Table to update the list of grafted interfaces per source-group.
Thus, this component along with the Pruning component maintains the global
Prune Table by dynamically updating the list of pruned/grafted downstream
interfaces for each source-group pair. This component assumes a Reliable com-
ponent underneath it for reliability of its Graft packets. This obviates the need
for this component to handle Graft ACK packets as in traditional DVMRP.

3.7 Multicast Forwarding Component

This is a part of the multicast data stack deployed at all nodes. This component
is responsible for multicast of traffic on all the branches of the source-group
multicast tree.

Initially when the branches of the tree are not pruned, packets follow the
source broadcast tree. But when pruning comes into operation and builds the
source-group multicast trees, packets are multicast on the un-pruned branches of
the multicast tree. The TSM is operational only on nodes, which act as Multicast
senders. On all other nodes, which either multicast the traffic (core and leaf
routers) and end-hosts (multicast receivers) the TSM remains inactive and only
the RSM is operational. The receiver first performs the RPF (Reverse Path
Forwarding) check on the packet. This checks if the packet is received on the
correct upstream interface, which is the one that is used to reach the source
of the multicast packet. If the RPF check is successful, the RSM forwards the
application data on (a) Each attached IGMP enabled interface if there are group
members on that interface. If there are no group members then it writes to the
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global memory Prune Table to prune the interface and drops the packet. (b) On
all un-pruned branches of the tree to its downstream dependent neighbors. On
multicast receivers it delivers the data to the application.

3.8 Multicast Reliability and Security Components

These components can be optionally inserted to the multicast data stack if
needed by the application. The multicast reliable component if inserted below the
Multicast Forwarding component provides hop-to-hop reliability. Several proto-
cols have been developed to address reliable multicast. This component can be
either designed as a sender-initiated component based on ACKs or as receiver-
initiated component based on NACKs. The flexibility of the composite protocol
framework supports the easy addition and removal of different versions of these
reliable multicast protocol components. The security components consist of the
Authentication or the Encryption components, which provide hop-to-hop au-
thentication and privacy of application data. Different versions of these security
components like Encryption based on DES or IDEA and Authentication based
on MD5 or SHA can be used.

4 Inter-stack Communication and Global Memory

One of the challenging problems in designing a network service is to identify and
address the issue of how different protocols interact with each other. Network
services require the cooperation of two or more network protocols; that is they
need to share information. In this section, we will describe our solution to this
challenging problem.

Our services use a active node based global memory object (GMO) shared
between the protocols. This GMO is independent of any protocol that uses it.
The scope and extent of the GMOmust be greater than that of any single proto-
col, which accesses the information, stored in the global memory object. Access
to read / write the contents of the shared information is provided through a
functional interface. A protocol component expresses its requirements for access
to global memory object(s) by listing the external functions it uses in its imple-
mentation. For example, the RouteExchange component uses a function to write
new routes into the Routing Table. It would use addNewRouteEntry (rt-entry)
to add a new route entry to the routing table. The IP forwarding function needs
to know the nexthop address for each destination. It would use an external func-
tion ipaddr getNextHopForDest (dest-addr) to get the nexthop address. These
functions addNewRouteEntry() and getNextHopForDest() are provided through
the functional interface of the global Routing Table object.

Generally, the GMOcan be regarded as a server, providing access to shared
information to protocols reading or writing shared information. For example, in
the TCP/IP world the IP Routing Table is created and maintained by protocols
like RIP or OSPF and is accessed by IP while forwarding data packets. In our
framework, the routing table is maintained as a GMO that is external to both
protocols IP and RIP.
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4.1 Global Memory Attributes

Functional interface: In our framework, global memory is abstracted through a
functional interface for both reading and writing data. The functional interface
model helps in encapsulating the data and hides the internal representation of
the object.

Synchronization: Protocols access the GMO only through the functional inter-
face, so the use of semaphores and/or any other control mechanisms to pro-
vide necessary synchronization are embedded in these functions in a uniform
and robust manner. Synchronization is not delegated to the users of the shared
object(s). Furthermore, since the interface is truly functional, no pointers are
shared, which eliminates any possibility of conflicts from implicit sharing through
multiple references to the same object. In a similar manner, implementation of
the functional interfaces can apply access-rights controls to limit access to sen-
sitive data. This approach makes protocol interfaces to the global memory are
very simple. Complex issues of synchronization and access control are addressed
just once in the design and implementation of the global memory object, instead
of requiring each protocol which shares the information to incorporate these
controls in its implementation. And the solution is much more robust, since the
integrity of the shared data cannot be compromised by a single protocol, which
does not correctly implement synchronization algorithm.

Extensibility: The GMO definition can be extended by adding new functions to
its functional interface, to provide services for new protocols developed which
use/access information in an existing global memory object. This provides a
powerful mechanism for developing new protocols and/or improving existing
implementations, while maintaining backward compatibility for previous clients
(protocols) that use the global memory object. Previous clients continue to use
the existing interfaces while the new protocols use the new extended version.

4.2 Implementing Global Memory

We consider three approaches to implementing a global memory object: a process
model, a shared memory model, and a kernel based (NodeOS) based model.

In the process model, each GMO is implemented as a separate process run-
ning as a server on each node. Typically, each global memory server is started
during the node initialization sequence. This server process maintains a single
internal representation for its global memory object. The server can choose any
representation for the data, because this structure is entirely local to the server.
The server implements an inter-process communication (IPC) interface accord-
ing to the functional definition of global memory. Any protocol that accesses a
global memory contacts the local server process as a client. Communication be-
tween the clients (protocols) and server is limited to the IPC interface advertised
by the server process. This implementation strategy is a direct implementation
of the abstract model we propose for a global memory object. Unfortunately,
the overheads associated with inter-process communication, even within a single
node, may limit performance of network protocol implementations.
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In the shared memory model, the GMO is stored in shared memory. The
functional interface containing the set of all functions provided by the GMO
is packaged into a dynamic link library (DLL). The protocol stacks, which run
as individual processes on a node, link to this library at run-time. Thus, each
protocol stack imports a copy of the DLL code space.

The function implementation is visible only internally and is opaque to the
protocols that use it. Each function internally invokes the shared memory func-
tions for reading/writing into shared memory. The shared memory library rou-
tines handle synchronization.

The shared memory approach strongly preserves the abstract functional inter-
face we want for global memory. Users of global memory have only an abstract
view of it through the functional interface provided by the DLL. Thus, protocol
components are not concerned with the details of the how the shared memory is
accessed. Also, the semantics and syntax of shared memory access functions may
differ depending on the operating system, but is has no effect on the protocol
component. Shared memory function calls are generally faster than IPC function
calls, thus providing faster global memory access.

A third alternative is to embed global memory objects directly in the oper-
ating system on which the protocols run. With this alternative, the operating
system (kernel) interface must be expanded to incorporate the GMO functional
interface. The operating system implicitly operates as the GMO server. This ap-
proach is worthy of consideration only for a few special and widely accessed global
memory objects, such as the routing table. The solution is vendor/operating sys-
tem specific. In addition, it requires extensions to the operating system interface.
For example, the current TCP/IP implementations use a strategy similar to this
(though not employing a pure functional interface) to provide shared access to
the routing table.

4.3 Initialization

Each global memory is independent of any network protocol, which uses it.
From the perspective of a protocol running on a node, the global memory is
a “service” provided by the node. Therefore creation of, and initialization of
the global memory is a responsibility of the active node environment. Dynamic
deployment of network services must determine if the global memory object(s)
used by the protocols, which form the service, are already available on the nodes.

The above figure illustrates different protocols of the multicast service coop-
erating by means of global memory objects. NeighborTable, RoutingTable, Span-
ningTree, PruneTable and GroupMemberTable are all global memory objects that
provide a set of read /write functions through their respective functional interfaces.
For example, the Route Exchange component of the multicast routing stack writes
into global memory using the write interface of the global RoutingTable object
and the Multicast Forwarding component of the multicast data stack reads us-
ing the read interface of the object. Each protocol component includes the list of
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Fig. 3. The global memory of the multicast service and the protocols that access each
memory section

external memory functions it accesses. getDownStreamNeighborsForSource(src-
addr,group-addr), addNewRoute(route-entry) are typical examples of read and
write external functions for the Route Exchange component.

4.4 Independence

The global memory objects are designed to be mutually independent of each
other. A multicast service may need both the global memory objects Routing
Table and Spanning Tree, but another network service might require only the
Routing Table. Dependency of the Routing Table on the Spanning Tree is un-
desirable.

The global memory objects are designed so that it can be used across several
services. For example, the Routing Table object can be used in unicast as well
as multicast, with possible variations in its set of functional interfaces.

5 Conclusion

A multicast network service has served as a case study in understanding a com-
posite protocol design framework. The basic functionality of traditional IP mul-
ticast protocols DVMRP and IGMP have been successfully expressed in the form
of several protocol components and composite protocol stacks. Global memory
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has been proposed as a solution for inter-stack communication in our framework.
Global memory design and features have been presented.
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Abstract. Reliability and security concerns have increased demand for Virtual
Private Networks (VPNs). Ideally, a VPN service should offer autonomous
overlay networks with guaranteed bandwidth allocations over a shared network.
Network providers seek an automated VPN creation and management process,
while users of a VPN would greatly benefit from secure control over the
handling of their traffic. Currently, network infrastructure does not support such
partitioning services and, due to its static nature, it cannot be adapted to meet
such new demands. Active and Programmable Network research has developed
a number of adaptable architectures. However, its current focus is on theoretical
service deployment rather than on applicability to large and shared networking
environments. This paper presents the application of a new programmable
architecture to enable on-demand VPN construction, bandwidth management,
and secure autonomous VPN control onto shared commercial infrastructure.

1 Introduction

There is constant demand for new and sophisticated network services such as
resource-assured networks for video conferencing. To support new services, network
elements must perform new and unsupported tasks. As a result, many task-oriented
devices have emerged such as web-switch, SSL, firewall modules, and new routers to
support new QoS models. As these devices are ‘closed’, network providers are
required to purchase new devices to support new services. However, an inspection of
the underlying hardware of these devices reveals that they can be combined and
reprogrammed to support new services.

Research in active and programmable networks has developed novel architectures that
‘open up’ network devices to support user-defined services [1, 2]. Such architectures
enable users to modify network behaviour by placing software components in the
forwarding plane or customising specialised forwarding plane hardware. These
architectures are not designed to leverage current commercial platforms because of their
inflexibility. Yet, commercial platforms are essential for the deployment of any service
architecture into the real-life networking environments of the Internet.

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 114 2007.
© IFIP International Federation for Information Processing 2007
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Recently, there have been increasing demands on ISPs to offer Virtual Private
Network (VPN) services across the Internet. Conceptually, each VPN represents an
autonomous, resource-assured, secure, and customisable network over shared
infrastructure for each user (i.e. VPN owner). Such a VPN requires partitioning
network bandwidth and providing users with the ability to secure and customise their
VPNs. These are features beyond the support of current Internet infrastructure and,
therefore, currently offered VPNs that fall short of expectation. A current VPN is
either: a simple point-to-point encrypted tunnel with best-effort delivery; or a static
overlay network of Service Level Agreements manually configured by ISP operators.
The former type only addresses the security requirement of a VPN, while the later has
a number of shortcomings. Firstly, an ISP cannot create or modify VPNs on-demand
due to the long and manual setup procedure. Secondly, at the core of a network,
bandwidth assurances can only be partially enforced for a large number of VPNs.
Thirdly, users cannot customise or deploy services in their VPNs.

This paper presents a new model to support VPNs and their on-demand
provisioning over shared commercial infrastructure. This model utilises a new
programmable architecture called Secure, Extensible, and Deployable-Programmable
Network Platform (SXD-PNP). SXD-PNP is used to deploy VPN support services
onto current commercial modules, and to partition network nodes into customisable
User Partitions for each VPN. VPN support services enable network providers to
construct and manage customisable and resource-assured VPNs on-demand. Each VPN
is allocated a series of SXD-PNP User Partitions, which enable VPN-owners safe
autonomous control and secure path construction by deploying their own services
within their partitions. To manage a number of VPNs across shared nodes, User
Partitions separate internal resources and use traffic classification mechanisms to
restrict their configurations to a permissible set of traffic. SXD-PNP employs a new
differentiated allocation model called Control-plane Quality of Service (C-QoS) that
manages internal node resources among competing partitions and among competing
services within a partition.

This paper is structured as follows. Section 2 provides an outline of SXD-PNP and
its implementation focusing on features that enable VPN provisioning. Section 3
presents the VPN support services. Section 4 describes an Edge-to-Edge QoS
mechanism that provides VPN resource guarantees across the network core. It also
discusses our experiences with its deployment onto current network devices. Section
5 gives a brief discussion of related works. The paper concludes in section 6.

2 SXD-PNP Overview

SXD-PNP is a flexible programmable router architecture that enables on-demand
service deployment. SXD-PNP services modify the handling of traffic. This is
achieved by configuring the forwarding hardware or by hosting the execution
environments found in active networks. SXD-PNP is an ideal service architecture to
deploy VPN support services and to facilitate VPN partition and customisation. This
is due to its features of: QoS guarantees on internal node resources, isolation of users,
traffic security enforcement, and commercial module utilisation.
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Fig. 1. Hardware Base Abstraction

SXD-PNP builds on an abstract node model called the Hardware Base Abstraction
(HBA). The HBA, depicted in figure 1, represents a switching platform composed of a
configurable realtime forwarding plane and separate extensible control plane. The
forwarding plane is composed of Network Interfaces (NIs) represent the realtime
hardware networking modules. These perform network traffic classification, forward-
ing, manipulation, and scheduling operations. The control plane is composed of
Computational Elements (CEs) and a Control-CE. CEs accommodate User Services
that construct Active Flow Manipulation [3] Paths (AFMP) among NIs to modify
traffic handling behaviours. Operations beyond NIs capabilities are performed in the
control plane by redirecting AFMPs to User Services that can use FPGA hardware to
optimised packet processing. The Control-CE performs User Partition setup, security
and C-QoS configurations, service deployments, load monitoring, and load balanc-
ing operations. All NI and CE components are interconnected by a high-speed
communication bus. Both planes can be expanding by adding components to the bus.

Hosting a number of competing VPNs on shared network infrastructure requires all
network resources to be partitioned amongst the VPNs. This involves partitioning
network bandwidth and each customisable node along its control and forwarding
planes. To partition link bandwidth, SXD-PNP deploys and configures bandwidth
management services which enforce Edge-to-Edge Resource Discovery and Admission
Control mechanisms [4]. At each customisable node (SXD-PNPs), the control plane is
divided into separate, resource-assured, and secure User Partitions. These nodes
allocate a User Partition to each VPN. The forwarding plane is partitioned among User
Partition by restricting each partition from performing flow manipulations on traffic
outside of its allocated VPN. The next subsection describes SXD-PNP control plane
partitioning. Subsequent sections discuss the mechanisms that enforce this traffic
access restriction (2.2) and the bandwidth partitioning mechanism (4).

2.1 User Partitions

A CE, depicted in figure 2, is composed of User Virtual Machines (UserVMs), a
System Process, and a Bus Management Process. Each VPN is allocated a UserVM
process with assured resources and access to AFM [3] on its traffic. This represents a
User Partition. A UserVM manages a number of Runtime Environments (REs) that
execute the User Services supplied by VPN owners. To ensure secure partitioning,
UserVMs are restricted from hardware access and communications with the exception
of through the System Process. The System Process guarantees to restrict UserVMs to
their partitions. Details on service interaction and AFMP construction are in 2.2.
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Fig. 2. Computational Element

The division and allocation of all internal node (control plane) resources among
User Partitions are performed through C-QoS. User Partitions are classified into one
of four C-QoS classes - Gold, Silver, Bronze, or Best Effort. C-QoS performs differ-
entiated per-class allocation and fair allocation for partitions within each class. Due to
the difficulty of determining user resource requirements or their availability in
heterogenous infrastructure, C-QoS uses a dynamic allocation model - allocating
resources from lower classes to an upper class as its load increase. Dynamic allocation
is performed until a specified lower limit is reach. This limit is used to ensure a
minimum level of resource availability to partitions. To allocate and reclaim resources,
C-QoS utilises Resource Managers that interface with the Operation System (OS)
resource management mechanisms. C-QoS Load Monitors track resource loads at CEs
to balance UserVM load among CEs.

To maintain node integrity, a certain amount of resources is reserved before
allocating resources among User Partitions. The aggregate capacity of links is
reserved over the bus to ensure NI-to-NI (network) traffic is never delayed as a cause
of service activity. All SXD-PNP management tasks and their messages are classified
into a special Realtime class. Realtime resource requests are granted before the
requests of other classes. This ensures that congestion will not affect the security or
partitioning of a node.

C-QoS categorises resources as Computational or Internal Communication.

Computational resources are the traditional OS controlled resources of multi-user
systems namely CPU scheduling, memory heap restrictions, I/O scheduling, and
harddisk quotas. These resources are managed within each CE independently by its
OS. The OS allocates resources to UserVMs in proportion to C-QoS classification and
it restricts UserVMs to their allocation. The allocation details for each computational
resource for each class are specified by the Control-CE and communicated via the
C-QoS interface to the OS resource management mechanisms. The implementation, in
section 2.3, interfaces to a modified Linux kernel.
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C-QoS extends its reach to differentiate services within a partition. UserVM
resources are divided among user-defined RE-subclasses into which REs are classified.
REs further differentiate between User Services by classifying services into Service-
subclasses. This structure permits N* levels of differentiations between services,
where N is the number of classes. As UserVM resources belong to the same VPN, to
avoid strict management overhead only ‘soft’ resource management mechanisms are
employed for service differentiation. A UserVM uses thread priorities to differentiate
REs and weighted thread slot scheduling in REs to differentiate User Services. SXD-
PNP provides three RE types, each with a different scheduling model to cater for
variations in service response time and allocation size requirements.
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Fig. 3. Dispatcher Hierarchy

Internal communication resources are represented by a hierarchy of dispatchers,
depicted in figure 3, which handle all internal communication. Scheduling mechanisms
within dispatchers are used to divide and allocate internal communication resources
among partitions. Computational and bus resources are allocated to dispatchers and
dispatcher time is then divided into slots which are allocated to partitions or child
dispatchers according to a dynamic class ratio. The bus is divided into channels or time
slots, depending on the technology in use. For identification (used in traffic access
restriction) and bus resource management, each partition is restricted by System Level
Dispatchers to an allocated channel or timeslot(s).
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Fig. 4. Dispatcher Structure

Dispatchers share a common structure, depicted in figure 4. However, dispatchers
differ in their verification scope and routing destinations depending on the hierarchy
level. Each incoming message is placed in a limited queue allocated to its source.
Source queues of the same class are serviced by the same fair scheduler that moves
messages to the corresponding class queue. Messages in class queues are serviced by
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a scheduler weighted with the C-QoS class allocation parameters. Each serviced
message is removed from the queue, verified as in figure 5, and routed to its next hop.

2.2 Network Abstraction and Traffic Partitioning

User Services construct AFMPs to configure new routing and manipulation operations
on their traffic. An AFMP is composed of combination manipulation points, typically
NPUs and CE specialised hardware modules, but may also include User Services for
control flows. Each manipulation point along an AFMP is configured to filter ingress
traffic into flows, perform specified manipulation operations on flows, and route flows
to other manipulation points or onto the network.

User Services construct AFMPs by sending configuration messages to System
Services. System Services are located at CEs to abstract the NPU configuration
interfaces from User Services. System Services then send NI specific commands on the
User Services behalf to each NI manipulation point. These commands are sent to the
system dispatcher as message originating from the User Services partition.
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Fig. 5. NI Structure

An NI is divided into two logical components, depicted in figure 5, the Access
Data Module (ADM) and the Network Processing Unit (NPU). NPUs represent the
configurable traffic forwarding and manipulation hardware. These NPUs operate at
wire-speed with no modification by SXD-PNP. ADMs ensure partitions only perform
operations that affect their VPNs by verifying all user configuration commands to
NPUs. This model partitions the forwarding plane without placing VPN classification
or security checking in the path of network traffic.

At an ADM, each message arrives at the Source Classifier that identifies the type of
each message by its source. This is established by the bus channel on which the message
arrived. NI messages are traffic packets and are immediately passed to the NPU.
Control-CE messages are configuration messages that update source classifications,
User Partition-to-VPN associations, or the bus scheduling details. UserVM messages
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are verified by a Command Verifier before being forwarded to the NPU. The Command
Verifier ensures that the flow filter of any forwarded configuration command falls
within the Access Control List of its source partition’s VPN.

2.3 Implementation

Figure 6 show the implementation of SXD-PNP a Passport 8600, an Alteon Web
Switch Module, and a number of PCs. The Control-CE and ADM have been imple-
mented in the Management Module’s Java Virtual Machine. System Services have
been implemented to interface with the manufacturer’s Oplet Runtime Environment
(ORE) [5] that configures AFM on its hardware modules. UserVMs are implemented
as JavaVMs that initiate a specialised Java Security Manager and UserVM thread
to manage control requests. UserVMs are hosted across a number of CEs that
are implemented on PCs running a Linux kernel 2.6.7 patched with the Class-base
Kernel Resource Management (CKRM) [6]. CKRM enables differentiated class-based
resource management on CPU, memory pages, and I/O. A C-QoS interface to the
CKRM file-system was implemented to enable the Control-CE to create classes,
configure their allocation size, and to classify UserVMs into classes.
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Fig. 6. SXD-PNP Implementation

3 VPN Construction and Management

This section presents the SXD-PNP VPN Construction and Management services
depicted in figure 7. They consist are of sets of services. The first, VPN Activation &
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Fig. 7. SXD-PNP VPN Structure
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Management Services, construct and manage VPNs. The second, VPN Internal
Management Services, enable user autonomous control over their VPN.

3.1 VPN Activation and Management Services

VPN Activation & Management Services are SXD-PNP System Services that enable
administrators to create, monitor, and modify VPNs across a network. These are
composed of a distributed Network Division Service (NDS), and three local node
services: a VPN Classification Service; a Bandwidth Management Service; and, a
User Environment Service. These services are placed in Control-CEs and a NDS is
placed at each node along VPN paths. NDSs collectively utilise the three local
services to perform VPN activation and management.

Inter-NDS communication is achieved via an activated flow that spans all NDSs,
called a VPN Management Protocol (VPN-MP) channel. A network administrator
uses the VPN-MP channel to setup, monitor, and modify VPNs. VPN-MP employs
security mechanisms to restrict NDS access to network administrators.

To perform VPN activation and management operations, network administrators
construct a single VPN-MP Request and send it to the ingress edge SXD-PNP. This
request is sent across the network and captured by NDSs along the Paths parameter.
Each NDS fulfils the request, tightens the filters, and propagates it to nodes along the
Paths. Filters are tightened using routing table information and subnet masks to
eliminate filter ranges inapplicable to the current node or to nodes remaining in the
propagation path. The VPN-MP Request structure is as follows:

1. Paths - Source and Destination network address combinations of all paths of the
VPN.

. Instruction Type — O/setup 1/modify 3/remove 4/list details

. VPN Number — 0 for new VPNs or operation on all VPNs

. Credentials - User ID and Encrypted Password

. VPN ACL (Access Control List) - List of Traffic Filters

. Network QoS class

. C-QoS class

. Signature — MDS5 hash encrypted using admin private key

0O LW

To fulfil a VPN-MP Request each NDS uses the three localised services. The User
Environment Service sets up a SXD-PNP User Partition according to C-QoS class.
The VPN Classification Service configures the appropriate NIs to classify traffic into
a VPN and configures their ADMs to restrict configuration access to the associated
User Partition. The Bandwidth Management Service configures the link bandwidth for
the VPN according to Network QoS class.

The User Environment Service uses C-QoS Load Monitors to locate the least
loaded CE for new UserVM deployment. This service then sends a Control-CE
request to Management Processes of the least load CE. This request creates a new
UserVM with the C-QoS class specified. Once the UserVM is started, it is instructed
to deploy the VPN Internal Management Services. These services are configured to
restrict access according to the Credentials specified in the request.

The VPN Classification Service utilises ORE System Services to configure
appropriate ingress NPUs to classify traffic according to the VPN ACL and mark its
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traffic with the VPN number. It also configures ADMs to allow the newly created
UserVM to configure operations on traffic marked with VPN number.

The Bandwidth Management Service partitions network link resource among VPNs
by configuring the Edge-to-Edge QoS Services, which are presented in section 4.

3.2 VPN Internal Management Services

VPN Internal Management Services are User Service running within each User Partition
to provide users with a configuration interface to the routing and manipulation operations
on their VPN traffic. They are composed of a VPN Command Interface Service, an
AFMP Construction and Management Service that is used by two specialised services
providing VPN specific features: a VPN Overlay Management Service and a Secure Path
Construction and Management Service.

The VPN Command Interface Service provides a remote interface for users to
interact with their User Services. It provides a command-line interface with username
and password authentication (the Credential in VPN-MP request). It parses user
instructions and parameters, calls the appropriate service, and displays the results. We
plan to develop this service to be accessible via an active path similar to VPN-MP,
enabling users to configure all nodes in a VPN with one request.

The AFMP Construction and Management Service provides the user and other
VPN Internal Management Services with the capability to construct, monitor, modify,
and remove AFMPs. It allows users to specify an AFMP Number, flow classification
filters, and a sequence of actions to be performed on the flow. To construct a AFMP,
this service uses the ORE System Service. Firstly, it locates a NI that is capable of
performing the specified action and configures it. It then configures redirection and
classification operations, to direct the path from the ingress NI, to the action NI, and
finally to the egress NI. It also maintains a database to track AFMPs and their
associated filters and actions, facilitating quick removable or modification of paths.

The VPN Overlay Management Service enables users to modify routes within their
VPN by adding or removing route entries. For a new entry, it constructs an AFMP to
redirect VPN flows to new destinations. It maintains a viewable table of routes, and
their AFMPs. To remove a route, this service removes its table entry and AFMP.

The Secure Path Construction and Management Service enables users to secure
sensitive flows in their VPN. As selective encryption at user hosts leads to security
holes, this service allows VPN users to guarantee security encryption mechanisms on
critical traffic at the network layer. It also allows the sharing of costly and specialised
equipment that guarantees high-speed encryption and decryption. This service sets up
AFMPs to redirect sensitive flows to encryption accelerators at ingress edge nodes,
and to decryption accelerators at egress edge nodes.

4 Bandwidth Management

Networks must enforce bandwidth management mechanisms to partition link
resources among VPNs. Current bandwidth management is performed by a DiffServ
[ref] model that employs proprietary QoS mechanisms locally at each router. These
mechanisms classify traffic at ingress into QoS classes by placing packets into a
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queue for each class. A Weighted Round-Robin algorithm services these queues,
spending more link resources on higher-class queues than lower queues.

To provide bandwidth resource partitioning among VPNs, traffic of each VPN is
classified into a single flow that is placed in a QoS class. However, this partitioning
cannot be mapped to the DiffServ model for two reasons:

1. Per-flow fairness — In DiffServ, same class flows are placed in the same queue
where packets are randomly dropped as the queue reaches its limit size. This model
does not treat all flows within the same class fairly. Therefore, it cannot be applied
to VPNs, as VPN of the same class do not get equal treatment.

2. Congestion Control — DiffServ does not employ admission control mechanisms to
prevent uncontrolled flows from causing congestion. Therefore, a VPN can affect
the resources of others by causing congestion.
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SXD-PNP uses Edge-to-Edge QoS Services to partition bandwidth fairly among
VPNs and prevent congestion. These services configure existing QoS router
mechanisms to enforce a Fair Intelligent Admission Control (FIAC) [4] scheme, as
depicted in figure 8. It uses a Resource Discovery (RD) feedback loop to gather the
congestion state information of the network. At each ingress node, an Admission
Control Module (ACM) reconciles with available resources via the RD loop, and
admits traffic intelligently according to the FIAC algorithm. The FIAC algorithm
guarantees to admit traffic according to class weights while providing fairness among
flows, and, based on the RD state report, prevent congestion by dropping packets at
ingress intelligently.

Two services implement the RD feedback. At edge nodes, we implement an RD
Service, which sends and receives “RD packets” along the feedback loop of VPN
paths. These packets are captured by a RD State Service at each node in the path
where the packets are updated with the congestion report. A demonstration of the RD
loop implementation can be found in [7].
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At edge nodes, the ACM is implemented through a FIAC Service. This service
configures ingress NI to classify VPN traffic into flows and to classify the flows into
its appropriate QoS class. It periodically uses state information supplied by RD State
Service to configure NI queue lengths and drop rates to prevent congestion.

FIAC required per-flow fairness mechanisms at NIs. Unfortunately, most networking
modules manufactured today are DiffServ compliant and do not provide a scalable
per-flow management model. To achieve per-flow fairness in our implementation,
presented in 2.3, we construct a static AFMP to redirect flows to the Web Switch
Module where Load Balancing mechanisms perform flow management. However, this
approach is still in initial design and testing stages.

The Bandwidth Management Service presented is section 3.1 uses the Edge-to-
Edge QoS Services to partition the network link resources among VPNs. It instructs
the RD Service to initiates feedback loops along VPN paths, if loops do not already
exist. The FIAC Service is updated to treat the VPN traffic as a separate flow and
classify the flow into the network QoS class specified in the VPN-MP Request.

5 Related Work

The extensive research in the field of Programmable and Active Networks has
developed a number of flexible and relatively secure network service architectures
[1, 2]. These architectures have not addressed the partitioning of access to traffic
among users/VPNs, while few addressed the allocation and management of internal
node resources.

Architectures [8-10] provide mechanisms to explicitly allocate each resource to
services, collection of services, or paths according to a specified or estimated
requirement. However, this fine-grained model is it is not scalable to a large number
of heterogeneous users and is impractical as it depends on prior knowledge of
resource requirements.

Due to these deficiencies, separate projects have been conducted to address active
node resource management [11-13]. These projects throttle the input of packets to
services to control their resource consumption. Their models hinge on the difficult task
of pre-determining or estimating the resources consumed by each packet. Furthermore,
these projects do not manage memory or internal communication resources. They also
do not account for services resource consumption outside of packet input influence.

6 Conclusion

We have presented a new platform programmability architecture, SXD-PNP, that allows
practical, secured, and true partitioning of network resources on commercial devices.
We deployed this architecture to construct programmable VPNs, address difficult issues
such as VPN traffic classification, bandwidth management, user service deployment,
and secure path construction. We described a solution that enables a VPN on shared
infrastructure as close as ever to a privately owned WAN.
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Currently, VPN support service and bandwidth management services are partially
implemented on our SXD-PNP testbed. Performance evaluation and VPN separation
analysis on a complete implementation will be presented in future publications.

It is anticipated that the SXD-PNP will be deployed both in the network core and at
the network edge. As a core router, it can be used to partition network resources into
separate and secured user domains (such as VPNs), and allow operators to introduce
services for the timely resolution of various traffic-engineering problems.

SXD-PNP is most useful when used in an edge device where all designed fea-
tures can be deployed. A service provider can rapidly introduce new services to address
the mismatches between domains in terms of network boundary, technology, and
administration. Our next step is to deploy the platform for constructing overlay net-
works where network resources can be safely partitioned and shared in Grid service
environments.
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Abstract. Service mobility is a highly desirable feature of future networks and
will be a key factor in supporting mobile users and meeting the increasing de-
mand for service resiliency and efficient resource management. Currently the
main approaches for developing mobile services are active capsules and mobile
agents but these are limited by design and fail to deliver sufficiently generic and
broadly scoped solutions. In this paper we propose a framework for developing
mobile (active) network services that aim to provide a more generic functional-
ity over that offered by current approaches, promoting a more flexible and intui-
tive way of developing mobile applications.

1 Introduction

Despite these manifold developments of active and programmable network research,
little attention has been paid to improving aspects of service mobility. So far, the main
model considered for migration of code and state of a running service from one active
node to another is that of active capsules [1, 2, 3], whilst most programmable network
solutions [4, 11, 20] account only for out-of-band loading of code rather than migra-
tion of executing ‘active services’. However, active capsule based approaches are
quite restrictive in terms of code and state mobility as they operate in-band only and
at a packet level granularity (i.e. carrying code and state in a single data packet). This
tends to restrict the implementations to very simple and short-lived services, as both
state and code for the service have to fit in a single data packet and code only exe-
cutes while the packet is forwarded through a node along the data path. Furthermore,
service mobility is restricted to the routing path of the packet hosting the service.
Service mobility is expected to play an important role in future network environ-
ments for various reasons. Mobile services can improve the user experience as he/she
roams between heterogeneous and diverse network environments. Another key aspect of
service mobility is its application for efficient resource management usually by means
of load sharing, or by protecting network resources from being exhausted. Last but not
least service mobility can facilitate service resiliency as it enables service-and-state
migration to network locations where resources and network availability are plentiful.

* This work is part of the research funded by the EPSRC grand GR/R31461/01 in Lancaster
University.
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In developing generic and flexible solutions to tackle these classes of problem one
needs to address a multiplicity of issues such as the handover of network flows, the
composition of autonomic services through cooperating control components, the man-
agement of active services outside the data path, and so forth. Technologies such as
mobile agents and active capsules provide ways of tackling only a subset of the
problem. Yet, as both of these technologies were introduced with a specific applica-
tion domain in mind, they are either not scalable or lack the features and capabilities
that would make them more generic and applicable to a wider range of applications.

In this paper we propose a framework for developing active services that can be
mobile and migrate to different programmable nodes at run time. The novelty lies on
the fact that it enables code and state migration in an application independent way by
mitigating the functionality at the execution environment (EE). This type of function-
ality was not previously considered in programmable network based solutions and
was therefore expected to be internal in the applications that need it. To provide a
generic model that is flexible, as well as effective, we tried to incorporate the benefits
of active capsule solutions and out-of-band mobile agent based technologies.

The remainder of this paper is organised as follows: In the next section, we discuss
the motivation for the work by considering a scenario that aims to illustrate the limita-
tions of existing technologies, namely mobile agent and active capsule based solutions.
In section 2, we investigate the requirements of a framework supporting the develop-
ment of mobile services. Then, in section 3, founded on the requirements of section 2
we present the proposed architecture. In section 4 we exemplify the intended use of the
framework with an example responding to distributed denial of service attacks. In
section 5 we consider related work in the area of service mobility and the tools to
facilitate it. Finally in section 6 we conclude this paper summarising our work.

1.1 Motivation

Before we examine the requirements of a framework for mobile active services, we
consider a scenario (Figure 1) that exemplifies the problem domain at hand. Through
this example we try to expose the limitations and inefficiencies of other approaches such
as mobile agents or active capsules to facilitate generic service mobility. Scenarios such
as the one described here motivated the development of the proposed framework.

In figure 1 nodes B, C and D are active routers, node A is an end node featuring ac-
tive network support and node E is a commodity network node. Node A wants to
exchange traffic with node E using a service deployed on the active routing infrastruc-
ture provided by the other three nodes (B,C,D). Initially A sends an active service
request to B, which is the first active node on its data path towards E. Node B, inter-
cepts the request and installs the requested active service. At the same time node B
forces the installation of a flow monitoring and management active service compo-
nent on node A and node D. Finally the service provisioning is activated and data is
routed from A through B and D to E. At a later time due to some external factor (for
example, congestion, resource utilisation, etc) node B cannot continue providing the
active service for node A. Instead of shutting down the service, node B may force the
migration of the active service to another active router (node C); subject to resource
availability. Using the flow management components previously loaded onto nodes A
and D the data flow can be redirected through node C so as to continue providing an
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uninterrupted service. Alternatively in an even more “extreme” case where node B
dies suddenly, the management components on nodes A and D could detect the “mal-
function” and correct the problem by re-installing the service on node C and recover
if possible the flow state.

Fig. 1. Service Mobility

Despite the seemingly specialised setup of this example, it is by no means restric-
tive and rather broadly scoped. We have tried to include in it all the characteristics
that need addressing when targeting the generic provisioning of mobile services: the
support for in-band and out-of-band programmability, the support for service mobility
in the data, management and control planes, the support for service composition and
integration, and the need to support user space services as well as low-level network
services (deployable in the forwarding path).

Using active capsules for the aforementioned scenario could address some of the is-
sues but not all (at least not without highly specialised design or extensions to the basic
concept). For example, it would be easy for an active capsule based solution to trigger
the installation of the active service on node B in the first place, since it resides on the
data path. However, using capsules to control the redirection of data flows is counterin-
tuitive. For this, the active node needs information about alternative nodes that are
ready and able to take over, necessitating long-lived state to be gathered and managed
by the service (especially for the situation where node B and C are more than 2 hops
apart). Unfortunately, active capsule based services are typically limited as the service
state migrates with the capsule packet — few systems allow inter-capsule state to be
stored at intermediate nodes and this is always restricted by the transmission path.

Also, as active capsules target in-band programmability, and only along the data
path, another limitation is the lack of support for the out-of-band transfer of service
state required for migrating the service from node B to C. Finally, as active capsules
advocate a per-packet processing approach, they do not scale and introduce unneces-
sary overhead when coarser grained processing is preferable (e.g. per flow).

In addition to providing support for processing active services, there is also need
for a management framework that can control service components running on active
nodes with regard to node local state (for example, during the migration or “cloning”
of a service in response to resource extinction). Although the use of mobile agent
technologies may seem like a solution, their use would only introduce additional
problems as they are typically implemented as high-level user-space solutions and are
unsuitable for low-level data processing on the forwarding path. Aside from the obvi-
ous performance implications, this severely limits the range of applications that can
be deployed using mobile agents. Returning to the example scenario in figure 1, if the
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active service provided by node B was a media caching or a NAT component, it
would be impractical to implement it using conventional mobile agent systems.

As a result, to overcome the aforementioned shortcomings of one or the other tech-
nology, we anticipate the need for a framework for developing mobile network ser-
vices that, in addition to being flexible, scalable, extensible and generic, combines the
strengths of existing mobile agent and active capsule technologies. The framework
proposed in this paper is based on the LARA++ [4] component-based active router
architecture. The extremely flexible design of LARA++ enables functionality in the
data path as well as the control path, allows deployment of mobile services vertically
in the network stack and accounts for micro- as well as macro- composition' (see
section 2.1 for details).

The benefits of introducing a framework for the development of mobile active ser-
vices as opposed to promoting the direct top-down design of active applications as
mobile services are twofold since it entails advantages both for the active node admin-
istrators and for the service developer:

e It promotes a single point of trust for the active node administrator. If the frame-
work is trusted by the active node policies, then so are the applications running
within it.

e If the framework provides a reasonable level of security, it removes the need for
the developer to build application specific protection mechanisms.

e It simplifies the development of mobile active service components through de-
sign reuse.

e It introduces a level of abstraction that reduces apparent complexity and im-
proves the manageability of the system.

2 Framework Requirements Specification

In developing a framework to support mobile active services, one must consider
the range of supported functionalities. The overall design is dictated by a set of fun-
damental principles that advocate its viability in a real world environment and its
usability by future applications. Before we describe our framework, we discuss the
fundamental requirements and basic design principles that have guided our design:

e Portability over any existing or emerging active node platform. This will be typi-
cally guaranteed by means of the execution environment (EE) that hosts the
framework.

e Extensibility without re-engineering the system or violating the specification.

e [Isolation of individual active services in order to prevent unwanted interaction
between services executing in the same EE.

e Modularity to facilitate dynamic binding to the framework at run-time. Individual
components of the service components at run time.

e NodeOS and EE compatibility.

! We define Micro-composition as being within the framework and Macro-composition as
being outside the framework on the active node or network.
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2.1 Framework Functionalities

The main functionality of the framework should be based on a mechanism that en-
ables code migration in a (semi-) transparent way to the mobile services. Although the
framework services should be ubiquitously provided to the mobile service, yet it must
also be possible to control/customize them whenever needed.

An important requirement is the support of an open and flexible mobility model fa-
cilitating both, forced mobility as well as intended mobility. The former refers to the
case where the mobile active service is ‘forced’ to move by the framework as a direct
result of some external. Forced mobility will typically be as a result of decisions in-
tended to ensure service resilience and will account for node-related problems such as
resource exhaustion and network related issues such as routing problems. In the case
of ‘intended mobility’, the active application itself decides to move in response to
application specific conditions.

So far we have argued that the most important reasons for enabling service mobil-
ity are the support of mobile users and the provision of service resiliency. These two
reasons are motivated from two different application domains. Derived from this
distinction also comes the need distinguish between the active nodes that can host the
service in case of forced migration (alternative active nodes), and those that can be
chosen by the application as candidates to host the mobile service in case of intended
migration (next active nodes).

Once an event necessitating service migration occurs, different way of migrating
services can be chosen depending on the situation. For example, if the service code is
not broadly available on the new active node as might be the case with a personalised
user service, it might be necessary to move both the code of the active service and its
state. In other cases, where the service component is already cached or already run-
ning on the new active node, it would be more economical to simply transfer the state.
The different types of transporting the services have been extensively considered by
both the active network as well as the mobile agent communities. The framework
should support all migration approaches and allow the mobile service to select the
preferred one.

The migration of the mobile service state (and potentially code) between different
active node platforms and diverse network environments is an interesting as well as
challenging problem. As new code loading mechanisms emerge, the complexity of the
problem increases. Therefore, the framework needs to provide a mechanism/protocol
that allows negotiation and deployment of an available code loading method among
the active nodes (work in this area has been considered in [9, 19]).

A critical factor determining the viability of any mechanism aiming to support the
migration of services from one network node to another is security. This accounts
both for the protection of the confidentiality of the information carried as part of the
service state, as well as the authenticity of the nodes and also that of the information
(both code and state) exchanged between the active nodes. It is unlikely that one ac-
tive node will “accept” and execute code with predefined state unless it can trust the
sending node and can check the authenticity of the transferred data. Therefore, the
framework needs to provide appropriate mechanisms that allow active nodes to estab-
lish and verify trust relationships between mobile service components.
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To avoid the limitations often seen in today’s mobile agent systems, the framework
must account for micro- as well as macro-composition of services. Very often
the design of composite active services (such as the one described in section 1.1)
follows the model of a loosely coupled distributed system. Other times a high level
service is decomposed into code components interoperating through a node local
composition model such as the one proposed as part of the LARA++ [4] active com-
ponent framework. Both these cases illustrate what we refer to as macro-composition.
The framework must be able to provide basic mechanisms or services through which
the different service components can interact when required — typically in the control
path. On the other hand, when the developer of a mobile service favours a modular
design of tightly coupled components that implicitly trust each other, it should be
possible to facilitate composition within an instance of the framework therefore fa-
vouring micro-composition.

Lastly, the framework requires appropriate authentication and access control
mechanisms to regulate access to individual functions of the framework API. Depend-
ing on the author and user of the mobile service, access to individual API calls must
be controlled (for example, only authorised services should be able to update the
alternative active nodes table). Ideally, these security mechanisms will be closely
integrated with the node local access scheme to NodeOS services.

In order to develop a functional and extensible framework the design of the APIs
and the exported functionality needs to be considered carefully. The goal must be a
level of granularity that permits the active service developer to use the framework
services at their full potential, while at the same time hiding the internal implementa-
tion details of each service. Wherever possible, a set of primitives must be used in
order to abstract the underlying structure of one mechanism over another. To exem-
plify this requirement, consider the need for providing different ways of transferring
state (and code), over the network, between instances of the framework. In most
cases, the mobile active service developer should be able to call “send (state_object,
destination, my_credentials)” without caring if ftp, http, or some other proprietary
data transfer mechanism is used. In this way, as new data transfer mechanisms
emerge, they can be integrated in the framework without breaking existing applica-
tions. On the other hand, for reasons of speed, efficiency, etc., a specific data transfer
method may be preferred. Therefore, the API should provide ways of querying at run-
time the existence of a specific method and select its deployment.

3 Design and Implementation

Founded on the requirements analysis presented in section 3, we developed a frame-
work for mobile active service components as part of the research carried out for the
ProgNet [5] project in Lancaster University. The current prototype is implemented as
an extension to a .NET [6] based execution environment (EE) running on the
LARA++ active node [4] while ports of Java [7] and OpenCOM [8] are also under
consideration as LARA ++ EEs.
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Fig. 2. Framework Architecture

LARA++ [4] is component-based active router architecture based on the program-
mable switch paradigm. It uses a filter-based composition model particularly suited to
supporting this framework and allows mobile components to be “hooked” directly
into the forwarding path. The generic programming model provided by LARA++
enables our framework to support both in-band as well as out-band network pro-
grammability. This makes our framework suitable for control and management appli-
cations as well as services on the data path. Finally, LARA++ provides a filter-based
pattern matching mechanism, enabling the flexible selection of packets subject to
active processing. In this way it provides a generic solution of overcoming the effi-
ciency and scalability problems of per-packet processing of active capsules.

3.1 Overview of Operation

A framework instance can host one or more closely coupled components that com-
pose a Mobile Active Service (MobAS) at a micro-composition level. We herein refer
to them as MobAS modules or simply service modules. If no MobAS modules are
executing within the framework, then the framework operates in so-called passive
mode, waiting for a MobAS from the network.

When an active application is implemented as a MobAS it initialises and executes
within an instance of the framework. During the initialisation process (or at any time
during normal execution) the MobAS may register with the framework a set of mobil-
ity events. These are typically application specific events or external triggers that
depict certain system and/or network conditions.

Parallel procedures related to the MobAS (for example, population of the next ac-
tive node table, callbacks for the registered events, etc.) can be either handled inter-
nally by the module that provides the actual service, or by separate module executing
concurrently to the one providing the service — thus promoting a more scalable design
based on separation of roles. Furthermore, the various service modules can interact
either directly or through the framework provided inter-module communication
(IMC) mechanisms.
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When a registered event, representing either an application specific condition, for
example, a serviced user has moved, or an external condition such as resource exhaus-
tion is triggered, its callback signals the framework manager to initiate the MobAS
migration.

The implemented mobilisation mechanism uniformly supports intended and forced
mobility. Since the service should be suspended while in consistent state, the frame-
work always tries to allow the MobAS time to continue until it reaches a point where
execution can be safely suspended. The MobAS developer can select and indicate
such points in the program by using appropriate annotations. Then, control is passed
back to the framework that takes action to package and send the MobAS.

Depending on the event source (application specific versus system/network related
events) the framework must choose, either from the alternative active nodes table or
the next active nodes table, a prospective host for the MobAS. Once a suitable active
node has been selected, the framework installs, configures, and activates a new copy
of itself on the chosen node using the ASDP [9] based service deployment interface.

Finally, when everything is ready the framework packages (serialises) the MobAS
with its current state, adds a digital signature and if required encrypts it; the packages
are then sent to the remote active node using a commonly available, and previously
agreed, transmission mechanism. The framework instance at the remote end, will
receive, the MobAS, (decrypt it, if required), verify its authenticity using the local
node’s public key, and resume execution where it was previously stopped.

Depending on the migration model the above process may vary slightly: i.e. only
the service state may be serialised and sent to the remote active node where it is used
with a freshly activated installation of the MobAS.

3.2 Architecture

As illustrated in figure 2, the framework consists of several building blocks each
facilitating a distinct functionality. The proposed architecture augments the function-
ality provided by the EE, while regulating the access to the EE API. Figure 2 also
shows the interactions among the distinct parts of the framework as well as between
the framework and the EE/NodeOS.

e  The framework manager is the “heart” of the framework. It is responsible for the
coordination and the interfacing between the framework components, thus pro-
moting a modular design whereby any component can be replaced (or upgraded)
independently without impacting the integrity of the rest of the framework.

e The MobAS registry is the component responsible for the registration of the
MobAS components with the framework. It holds the configuration of the
MobAS regarding its operation (for example, service module scheduling priori-
ties), and the MobAS user/author credentials that determine the API access
privileges.

e The event manager is the component that handles the mobilisation events. Both
application specific as well as external system and/or network events that can
trigger the migration of the MobAS are registered with this component along
with any callbacks (that will be called upon firing an event).
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e The communication/control broker component is responsible for the communica-
tion with instances of the framework installed on remote active nodes. Further-
more, this component handles the transmission of the MobAS from one active
node to another, by negotiating a suitable data transfer method that is available on
both active nodes. This is facilitated by means of a service deployment interface
based on ASDP protocol [9].

e The security broker is responsible for providing the mechanisms to secure the
code/state transmission between two active nodes. It holds a copy of the local
node’s private key and maintains a cache with the public keys of the active nodes
that have been contacted in the past. It provides digital signing and encryption
services for the framework.

e The alternative hosts table and next hosts table data structures maintain lists of
potential future hosts for the MobAS. The next host table is maintained by the
MobAS and holds a list of active nodes that may host the MobAS when an appli-
cation specific event is triggered. The alternative host table on the other hand, is
maintained by the framework (currently populated from the contents of a con-
figuration file), and holds a list of alternative neighbour active nodes willing to
host the MobAS.

e Finally the framework API controls access to the framework and the EE services.

=

A Case Scenario

To demonstrate the intended functionality of the framework, in this section we de-
scribe an example scenario whereby a server in the internet is assumed to be a victim
of a DDoS SYN flooding attack [10]. It should be noted that with this example we do
not aim to propose a comprehensive solution for the specific problem, but rather to
exemplify the functionality of our framework.

Under this attack strategy, one or more malicious machines in the Internet send
TCP SYN packets with various spoofed source IP addresses, at a very high rate to a
victim server. The server replies with a TCP SYN/ACK packet to the spoofed IP
addresses and waits for the ACK response to establish the TCP connection. Since the
IP addresses are spoofed, and since the receivers of the SYN/ACK packets have not
initiated the connections, the packets are dropped, leaving the victim node with a set
of dangling TCP connection requests waiting to time out. The effect of this condition
when it takes place at high frequency is the backlog queue exhaustion that leaves the
server unusable as there are so many TCP connections waiting to be established.

Fighting against such types of DoS attacks is particularly tedious as it is impossible
to filter the spoofed packets based on their source IP address. The most common
countermeasure is to perform “traffic shaping” at the nearest to the victim router.
Although this salvages the victim server resources, it usually cannot prevent the dis-
ruption of the service as new incoming connections are difficult to establish.

To counteract this attack we propose the use of a mobile active component that ul-
timately aims to track the source of the attack by following the spoofed traffic flow
from the victim to its source, based on the exhibited traffic pattern (of the attack) [12].
Then, “move” as close as possible towards the attacking host and install a firewall to
block the malicious traffic.
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The overall functionality would be provided by three cooperating mobile service
components: (i) one that performs in-line network measurements to detect congestion
patterns in the network (herein called measurements component), (ii) another one that
samples the network traffic and performs SYN flooding detection (herein called
flooding detection component), based on techniques proposed in the literature (such
as SYN-FIN differentiation [13]), and (iii) one that processes the measurements of the
other two components, classifies them, identifies the traffic pattern of the attack, and
migrates to the next active node closer to the source of the malicious traffic (herein
called DoS tracker component).

Initially, the DoS tracker component is installed in an active node close to the vic-
tim server. It then instruments the installation of several flooding detection compo-
nents in neighbour active nodes and receives periodically the feedback from them.
Once a DoS SYN flooding attack has been detected by the flooding detection compo-
nent, the DoS tracker deploys within a range around the “abused” network interface,
several measurement components and tries to identify the traffic pattern of the attack
and find the originating point in the immediate network neighbourhood. If such a
point is located then the DoS tracker “clones” itself on an active node closer to that
network location. The same process is repeated again and again and the DoS tracker
component “crawls” through the network closer to the source of the attack; for as long
as there are available active nodes. When it cannot progress anymore or it has reached
the network of the attacker, it can install a filter to block the malicious traffic as close
as possible to the attacker’s machine.

This scenario advocates the usefulness of the active service mobility to address
problems that are otherwise difficult to tackle with conventional approaches, and
demonstrates the functionality of our framework.

5 Related Work

Traditionally, service mobility has been facilitated by means of (mobile) agents. Their
applications cover a wide range of distributed services ranging from processing of
scientific data [13], evaluation of security algorithms [14], scalable network manage-
ment [15], and so forth.

The development of distributed services is often supported by middleware solu-
tions such as .NET [6], Java [7] and OpenCOM [8] that provide abstraction of system
and network services (reflective middleware), portability, type safety, and other high
level facilities that ease the development of distributed applications. As these plat-
forms often don’t provide complete support for developing mobile agent applications,
a few frameworks have been proposed [16], [17] that extend or enrich the functional-
ity of the aforementioned middleware platforms accordingly. The approach presented
in [17] is perhaps the closest related to our work in this paper; yet like all mobile
agent solutions, it accounts for user space applications, and cannot support the devel-
opment of network services that can be deployed on the forwarding path.

On the other hand, the emergence of active networks research has enabled alterna-
tive ways of developing (low level — even within the forwarding path) mobile ser-
vices. Certain classes of network applications such as traffic flow management in
ad-hoc networks [18] can be efficiently developed by means of active capsule based
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solutions [1, 2, 3]. However, as we have argued in this paper capsule based solutions
exhibit limitations with regard to their flexibility, applicability and the scalability
outside the scope of their original application domain. On the other hand, program-
mable network approaches, like [4, 11, 20], have not considered the issue of generic
run-time service mobility, apart from the simple case of remote loading/installing of
code out-of-band.

6 Conclusion

In this paper we have presented the requirements analysis and the implementation of a
framework for the development and management of mobile active services.

Initially, we outlined the need for service mobility in order to support mobile users
and facilitate resilient and resource efficient servicing, in unreliable network envi-
ronments. We then, examined the functional requirements of a generic framework that
would enable the development of mobile services vertically across the network stack,
in-band as well as out-of-band in the data path.

Finally, based on these requirements we presented an implementation that takes
advantage of the flexibility and efficiency offered by the LARA++ programmable
node platform, in combination with the portability and modularity provided by mid-
dleware platforms such as.NET, to deliver a generic, extensible and flexible develop-
ment platform. The proposed framework overcomes the limitations encountered in
mobile agent and active capsule technologies and provides a more viable, practical
and complete solution (combining the best of the two worlds), which can be used to
develop user space applications as well as low level network services targeting the
data, control or management planes.
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Abstract. The early goals of Active Networking (AN) were to increase
the pace of network evolution and to facilitate application specific pro-
tocols. Our aim is to demonstrate that for a specific application domain,
Ad Hoc network routing, these goals have been substantially met. We
argue that Ad Hoc networking is a domain that is well suited for this
demonstration, due to its needs for both evolution and adaptation.

We support our claim by building a series of Ad Hoc routing pro-
tocols, based on both DSR and AODV, that demonstrate heavyweight
evolution, lightweight evolution, and routing adaptation. We based our
design and implementation on our Mobile Active Networking Environ-
ment (MANE). MANE is a direct descendant of PLAN/PLANet and,
as such, supports both Active Packets and Active Extensions as pro-
grammability mechanisms, thus giving us maximum flexibility in our
demonstrations.

Keywords: MANET, Ad hoc Routing, Active Networking, Adaptation.

1 Introduction

The original goals of Active Networking (AN) were clear: First, to make it eas-
ier to deploy new protocols or alter existing protocols to allow the network to
evolve more readily; and, Second, to allow protocols to be customized to specific
application needs. AN attempts to meet these goals by adding programmability
to the network infrastructure. Although there have been a significant number of
AN systems proposed and implemented [LI2I3J[45], there has been less work done
to show that these systems meet AN’s original goals. The purpose of this paper
is to show that, for a specific application domain, a mature, well-understood AN
system can meet these original goals.

For the AN system, our Mobile Active Network Environment (MANE) [6]
was the obvious choice. MANE is the most recent embodiment of our work on
PLAN [II7] and is a direct descendent of PLANet [8]. Like our earlier work,
MANE combines programmable Active Packets (APs) with downloadable node
resident Active Extensions (AEs), thus allowing us to explore both of the two
principle AN programmability approaches in the same context. In MANE, APs
carry PLAN programs that execute as the packet moves through the network.

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 1387 2007.
© IFIP International Federation for Information Processing 2007
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APs provide the programmable “glue” that binds the network together. AEs
form the basis of the node-resident programmable infrastructure by allowing
new functionality to be downloaded into the nodes, either to modify node be-
havior or to provide new services callable by APs. MANE goes further than any
of our PLANet implementations in its support for AEs since it provides not
just plug-in extensions, but also dynamic-update extensions [9I6]. When used
in conjunction with plug-in extensions, APs can use new node-resident services
specialized to their needs if the standard services are not sufficient. Further,
dynamic-update extensions can update a system’s functionality while the node
remains operational and can affect the operation of existing functionality, even
if there has been no pre-planning to provide a plug-in interface. The distinction
between plug-in and update extensions is discussed in more detail in [9/6].

As an application domain, we chose routing for mobile ad hoc networks
(MANETS) [I0]. There are a number of reasons for this choice [II]. First,
MANET routing is a very active area of research and the potential protocols
of interest are still changing. Thus, if AN does facilitate evolution, it would be
possible to deploy existing routing algorithms with the expectation that they
could be easily replaced by better algorithms as they are developed. Second,
MANET environments can vary greatly and the preferred routing algorithm can
be different for different environments. Thus, if AN does facilitate application
specific protocols, it should be possible to choose and dynamically deploy the
best algorithm for the environment at hand. Third, the conditions present in a
MANET may change so that the algorithm currently in use is no longer opti-
mal. The ideal routing protocol may need to change dynamically. AN offers the
possibility of adapting the algorithm dynamically as conditions change. Finally,
because MANET'Ss are not widely deployed or standardized, it is quite possible
that a node will not have the desired algorithm present. It is even possible that a
node will have no available MANET routing algorithm. AN can provide us with
the ability to deploy the desired algorithm on-the-fly.

In this paper, we focus on two well-known MANET routing protocols, Dy-
namic Source Routing (DSR) and Ad-hoc On-demand Distance Vector routing
(AODV). We chose these protocols because they are perhaps the most widely
accepted and studied of the myriad of possible choices. Using these protocols, we
demonstrate implementations that realize the possibilities discussed above. First,
we show how a simple version of DSR, could be deployed on a network where it
was not currently deployed and where perhaps no ad hoc routing protocol was
available. Second, we show how that simple version can be evolved dynamically
into a superior version even without changing the code resident on the nodes.
Third, we show how AN enables us to create a hybrid of DSR and AODV that
allows us to adapt to changing conditions in the network dynamically.

The remainder of this paper is organized as follows. Section 2] is an overview
of the two ad hoc routing protocols, DSR and AODV. In Section Bl we discuss
AN technologies and our AN platform. Section [ presents our implementation of
a simple version of the DSR protocol. Section [l demonstrates how we can deploy
a new ad hoc routing protocol on a network where no ad hoc routing protocol is
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available. In Section [6] we describe how to use active packet evolution to evolve
our simple version of DSR into a more efficient one without modifying node-
resident code. Section [7] presents a protocol that is a hybrid of DSR and AODV
that can adapt to changing network conditions. Finally, Section [§ concludes the

paper.

2 Ad Hoc Routing Background

Understanding the examples we present requires some basic knowledge of how
the routing protocols we have chosen work. The two protocols, DSR and AODV,
are both reactive (or on-demand) protocols. This means that rather than always
maintaining a route to all destinations (proactive routing) they find a route on-
demand when it is actually needed. When a packet needs to be sent and a route
is not already known, both protocols find routes by flooding the network with
a route request packet. When the destination is found, a route reply packet is
sent, which sets up the needed data structures for each protocol to actually send
the packet. The protocols differ in the exact nature of this discovery process, in
the nature of the routes, and in many details of the basic process.

2.1 Dynamic Source Routing

The DSR protocol [I2] uses data packets that carry source routes that specify
each next-hop node directly in the packet. It is composed of Route Discovery
and Route Maintenance operations. In the Route Discovery phase, when a route
is needed, a source node (S) attempts to obtain a source route (the sequence
of nodes that the packet should visit) to a destination node (D) by flooding
ROUTE REQUEST packets throughout the network. The request packets collect
route information as they are propagated through the network. The first route
request packet to reach the destination returns a ROUTE REPLY packet with the
sequence of nodes it visited. When the route reply packet reaches the source,
the source route it contains is used to send the data packet. In order to reduce
routing overhead and make the best possible use of route information, each node
maintains a route cache into which the new route is also entered. As described
in Section [0 in more highly optimized versions of the protocol, this route cache
can be used to short-cut route requests. In the Route Maintenance phase, S is
notified of the link failures, if any, by nodes adjacent to the broken link. Then, S
will initiate another route discovery operation by generating a new route request
packet.

2.2 Ad-Hoc On-Demand Distance Vector

The AODV routing protocol [13] is the on-demand version of the Destination Se-
quenced Distance Vector routing protocol [14]. Unlike DSR, AODV data packets
carry only a destination address; next-hop addresses are maintained in routing
tables on the intermediate nodes. However, AODV still has the same basic Route
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Discovery structure as DSR, the route reply packets simply must set up the in-
termediate nodes’ routing table while returning to the source. AODV also uses
sequence numbers to discern stale routes and maintain route freshness. AODV
also has a Route Maintenance aspect, which is similar to DSR’s. All of this
means that the basic implementation structure of AODV is similar to DSR, but
many of the key details are different.

In spite of their similarities, it has been shown that the two protocols perform
differently under various network conditions, especially the degree of network
mobility [I5JT6]. It appears that DSR may be more sensitive to mobility than
AODV. Under lower mobility, since there are relatively few link changes, DSR’s
aggressive caching strategy is effective in achieving better performance than
AODV. However, in high mobility cases, AODV seems to do better than DSR
because of more conservative routing management [16].

3 Active Networking and MANE

AN provides adaptability to facilitate application-specific customization and
speedy network service evolution [I7]. In this section, we describe the pro-
grammability mechanisms of AN and the modifications we made to MANE to
support ad hoc networking.

3.1 Programmability Mechanisms

There are two basic mechanisms for adaptability in AN: Active Packets and
Active Extensions [IT]. APs carry programs that execute as they pass through the
nodes. Packet execution can perform management actions on the nodes, affect
their own routing, or form the basic distributed computational framework of
larger protocols. Since packet programs can accomplish protocol implementation
on-the-fly, they are a quick and effective way of deploying new services in existing
networks. Also, packet-by-packet adaptivity enables the network to adjust agilely
to changing environments.

Complementary to APs are AEs, which form the basis of the node-resident
programmable infrastructure by providing the services callable by APs. AE’s can
be dynamically downloaded to modify a nodes behavior [I8J6]. When used in
conjunction with plug-in extensions, packet programs can use new node-resident
services specialized to their needs if standard services are not sufficient. Further,
update extensions can update a system’s functionality while the node remains
operational. Update extensions can affect the operation of existing functionality,
even if there has been no pre-planning to provide a plug-in interface.

The flexibility of these two mechanisms together makes AN a good choice
for environments that require a high degree of adaptivity, such as MANETSs. In
MANETS, as the nodes move, link conditions may change frequently; thus the
routing protocol needs to cope with those variations nimbly. Moreover, because
ad hoc networks can occur without prior planning, it is entirely possible that
the ideal routing algorithm may not be known in advance and may change as
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the network is in use. To overcome such routing heterogeneity, it is desirable to
promptly conform to a unified protocol. AN’s ability to implement a protocol
on-the-fly makes it possible to agilely evolve and adapt routing protocols.

3.2 MANE

Our Mobile Active Network Environment (MANE) [6] implements the Switch-
Ware architecture [1] and is the descendant of our previous AN testbed, PLANet
[8]. Active packets are written in the Packet Language for Active Networks
(PLAN) [7] and service functions are written in Popcorn [19], which is a C-like
type-safe language based on TAL (Typed Assembly Language) [20]. Here we
describe the modifications of MANE needed to support ad hoc networking in
general and in particular to support on-demand routing protocols. Note that
the first two modifications are really to our underlaying emulation, in a “real”
network they would not be needed. The last two modifications would be needed
in real networks and in Section [5] we discuss how they could be achieved dynam-
ically using our AN mechanisms.

Addressing. Like an IP address, MANE addresses are globally unique and
hierarchical. A node is identified by a network number and a host number.
The hierarchy is based on sub-nets of nodes and each node on a sub-net can
broadcast to all other nodes. Communication with nodes on other networks
must be mediated by routers. Based on this hierarchy, MANE supports Mobile-
IP-like mobility by utilizing AN’s evolution techniques [6]. For ad hoc networks,
where each node works as a router, we modified MANE to use a flat addressing
scheme, where host numbers are used as a unique address.

Mobility Emulation. MANE emulates broadcast networks by keeping track of
which nodes are on a particular sub-net and using UDP to communicate between
neighbors. Broadcast is achieved by repeatedly unicasting to every neighbor
This also supports emulation of physical node mobility, allowing a node to leave
a sub-net and to join new sub-nets. Even though this emulation is transparent
to higher-level protocols, MANE needed to inject special APs to disconnect and
connect a node [6].

For ad hoc networks, we need a more scalable and distributed way of emu-
lating physical mobility. Therefore, we adopted a method similar to that used
by ns-2 for wireless network simulations [21]. There is a pre-generated mobil-
ity file describing the physical movement. Also, there is a virtual master node
with a global “bird’s eye” view, whose role is to update neighbor information
by sending neighbor information packets periodically to every node. The virtual
master obtains neighbor information from the mobility file. Neighbor informa-
tion is used only in emulating physical mobility and wireless link broadcasting,
not in network-layer routing.

! It should be clear from this description that the goal of MANE is to allow flexible
experimentation with models and functionality, not to provide a high performance
AN implementation.
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Routing Buffer in the Network Layer. Since we are experimenting with
reactive ad hoc routing protocols, there needs to be a buffer — the routing buffer
— to hold the packets during route discovery. When a route is discovered, the
corresponding packets are released from the routing buffer and pushed into the
lower layer queue for transmission. To support reactive routing protocols, MANE
implements the routing buffer in the network layer. If there is no route informa-
tion for a packet, a sender saves the packet in the routing buffer and initiates
route discovery. Route reply packets cause the sender to free the packet from
the routing buffer and resume the transmission of the packet.

Link Layer Acknowledgements. Any link can be broken due to either node
movements or channel deterioration and ad hoc routing protocols need to be able
to discover these failures. For route maintenance and detecting link breakage,
we added link-layer acknowledgements to MANE. After transmitting a packet,
the link layer saves the packet in the interface queue and waits for acknowledge-
ment. If there is no acknowledgement during a timeout period or if a negative
acknowledgement is received, the link layer retransmits the packet. When a cer-
tain number of trials fail, the node recognizes it as link breakage.

4 A Simple Version of DSR

We first present a simple version of the DSR protocoﬁ, which we will later show
how to deploy and evolve. In our initial simple version, no use of the route cache
is made at the intermediate nodes. All intermediate nodes simply re-broadcast
the first instance of a route request received after appending their own address,
and ROUTE REPLY packets are generated only by the destination.

In MANE, a protocol is implemented in two levels; active extensions and active
packets. AE’s are node-resident and implement the service functions needed for
the protocol, while APs serve to glue together the AE functionality and actualize
the protocol. We first present the services needed for DSR, followed by the AP’s
that are used by the protocol.

4.1 An Active Extension for DSR

Table [ shows node resident services needed by DSR. Get ID() generates a
unique identification number for a new route request. There are two functions,
LookUp RouteCache() and SaveIn RouteCache(), for managing the Route
Cache. To filter out duplicate requests, Mark Dup Request() and Check Dup
Request () are used to manage the Duplicate Request Check List.

4.2 Active Packets for Basic Route Discovery

Figure [Il shows the pseudocode for route discovery, while Figure P shows the
PLAN implementation. The pseudocode shows that as the packet executes at

2 In referring to the DSR protocol, we mean the basic idea of DSR, not literally the
DSR standard.
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Table 1. Service Functions for DSR

Functions Types

Get ID() null = int

LookUp RouteCache(dest) host = host list

Saveln RouteCache(dest, srcRoute) host*(host list) = null
Mark Dup Request(source, ID) host*int = null

Check Dup Request(source, ID) host*int = bool

each node duplicates are discarded. Then, if the packet is at the destination a
route reply is sent and the route is saved, anticipating the possibility of data
being sent back to the source. If the packet is not at the destination, the current
address is simply added to the route and the packet is reflooded.

In addition to the service functions above, the PLAN code uses a number of
PLAN core services and language constructs. thisHostIs() returns a boolean
value indicating whether the given network address matches the address of the
current node. getSrcDev () returns the interface on which the packet arrived,
and thisHost0f () returns the network address corresponding to the given de-
vice. Using these functions and the list operator for concatenation, : :, the route
request packet can obtain the source route as it is propagated through the net-
work (Lines 9-13). OnNeighbor () is a network primitive that generates a child
AP executing on a neighbor of the current node. getRB() returns the amount
of resource bound available in the packet.

1: INPUT: destination address D, list of hosts R
2: if this is a duplicate request then

3:  discard this packet

4: else

5: if arrived at D then

6: send Route Reply with R

7 save R in route cache

8: else

9: append my address to R

10: flood this request to all neighbors
11:  end if

12: end if

Fig. 1. Pseudocode for Basic Route Discovery

The actual implementation corresponds closely to the pseudocode. In Line 2
route discovery starts by checking for duplicate requests. If the request has been
already seen, this packet is discarded (Line 15). If not, it will save the tuple
<source address, request id> in the Duplicate Request Check List (Line 3). If
the request has arrived at the destination, D saves the source route to S and
generates a route reply packet (Lines 4-7). Based on the assumption that links
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fun routeDiscovery(src, dst, id, srtRecord) =

: if (not Check Dup Request(src, id)) then (

Mark Dup Request(src, id);
if (thisHostIs(dst)) then (

SaveIn RouteCache(src, srtRecord);

routeReply(src, dst, srtRecord, reverse(srtRecord))
)
else ( (* intermediate nodes *)

let val myAddr = thisHostOf (getSrcDev())

in

OnNeighbor (| routeDiscovery| (src, dst, id, myAddr::srtRecord),
broadcast, getRB(), getSrcDev())
end

)

: else () (* dup req. discard *)

Fig. 2. PLAN for Basic DSR Route Discovery

: INPUT: source address S, list of hosts R
: if arrived at S then

save R in cache
exit route discovery
send data using R
else
forward this packet to S

: end if

Fig. 3. Pseudocode for Basic DSR Route Reply

fun routeReply(src, dst, srcRoute, routing) =
if (thisHostIs(src)) then (
SaveIn RouteCache(dst, srcRoute);
exitRouteDiscovery ()

)
else (

let val nexthop = hd(routing)

val routing = tl(routing)
in OnNeighbor(|routeReply|(src, dst, srcRoute, routing),
nexthop, getRB(), getSrcDev())
end
)

Fig. 4. PLAN for Basic DSR Route Reply

are bi-directional, the source route is reversed to be used as a route for the route
reply. If this is an intermediate node, the nodes address is prepended to the
current source route and OnNeighbor is used to broadcast the request to all the
1-hop neighbors (Lines 8-14).
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Figure[Bshows the pseudocode for route reply, while Figure[dshows the PLAN
implementation. The pseudocode shows that a packet is simply forwarded at
intermediate nodes, while at the source the route is saved in the cache and then
any data destined for the destination is sent.

Again, the PLAN code corresponds closely to the pseudocode. If the reply
has arrived at the source, the route is saved and route discovery exits, triggering
(implicitly) the data packets to be sent. Lines 7-11 show how the reverse source
route is used at an intermediate node. In Line 7 the nextHop is read from the
front of the list and in Line 8 it is removed from the list. In Line 9-10 OnNeighbor
is used to send the reply to the next hop, along with the truncated route.

5 Deploying DSR

Given the varied environments faced by MANETS, it is quite possible that the
most appropriate routing algorithm will not already be deployed on all the nodes.
In fact, given that MANETSs are a new technology, it is possible that no routing
algorithm of any kind is deployed. This is exactly the sort of problem that AN
was designed to solve. In particular, let us consider how we could deploy our
simple version of DSR.

Our DSR implementation has two components, the AE making up the service
routines and the APs that use these routines. Since the APs carry their own
code with them, deploying them is trivial, we simply inject the required APs
into the network. Deploying the AE is only slightly more complex.

In MANE, code for an AE can be dynamically linked into a running node [9].
During this linking process, the AE can define new services that can be called
from PLAN. Once this has been done the APs that use those services will be able
to function. Now the only question is how to discover which nodes need to have
the AE installed and how to transport the code to those nodes. There are many
possible approaches, for example, we could imagine an ANTS-like [2] system
where APs implicitly discover whether the needed code is node-resident and
then download it from predecessor nodes or perhaps from some global repository.
Another possibility is that AEs could be downloaded from a central repository,
perhaps on demand.

For illustrative purposes and implementation simplicity, our implementation
uses a simpler approach. The route request packet carries the extension in the
packet itself and tests to see if it needs to be loaded as it floods the network.
Figure[lshows the pseudocode for this simple solution. In Line 2, the packet checks
if the extension it needs is present. If not, it will dynamically load and install the
extension on the node before executing route discovery. This simple use of plug-in
evolution [6] allows us to deploy the DSR protocol dynamically and in a timely
manner. Although simple and elegant, it does seem likely that space and security
considerations may make this approach less desirable in real systems.

We have swept one potentially important point under the rug. Most of the
changes we made to MANE that were described in Section were really con-
cerned with improving our emulation of mobility and would not be needed for a
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: INPUT: destination address D, list of hosts R, Extension F
if DSR Service Not Present then
Load DSR Extension From This Packet
: end if
: DSR Route Discovery

T W N =

Fig. 5. Dynamic DSR Deployment

real network. However, some of the changes would actually need to be made to
support DSR or AODV. In particular, the proactive routing algorithms typically
used in wired networks have no need to potentially queue packets when a route
does not exist, they simply drop those packets. Adding this queue is not simply
a matter of plugging in a new PLAN callable service function, it requires more
fundamental changes to the node implementation.

This is an excellent example of where MANE’s support for “update extensions”
comes into play. Using dynamic updating technology [9], we can load an extension
that makes significant changes to the node implementation, including inserting
the new queuing mechanism. Similarly, we could used update extensions to add
the link-level acknowledgements needed to support route repair.

6 Evolving DSR

The ability to deploy a new protocol on-the-fly using AEs is a powerful mech-
anism for evolving the network. However, it is also a heavyweight mechanism,
requiring that code be dynamically linked into a running node. Using update
evolution is even heavier weight, since it enables almost arbitrary changes to be
made to a node.

It seems likely that only a few network users will be trusted to make these
kinds of heavyweight changes to running network nodes. Does this mean that
only those privileged users will be able to evolve or customize the network?

In this section, we show that significant protocol evolution can be achieved
without resorting to making permanent changes to the node. The key mechanism
is, of course, packet programmability. If there is a need to evolve or customize a
routing protocol, APs can implement the new one without modifying the services
of the nodes in the network. This kind of Active Packet evolution [6] enables the
network to promptly evolve with the help of common and reusable AE’s. PLAN
plays an important role here, because its strong safety and security guarantees
allow unprivileged, third party user to safely program the network.

6.1 Active Packets for Optimized DSR

Our initial DSR, implementation is quite simple and does not take advantage of
many of the optimizations that are possible. In particular, intermediate nodes
simply implement flooding, despite having route caches that might contain the
route that we are searching for. To utilize route control packets efficiently and
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: INPUT: source address S, destination address D, list of hosts R
if this is a duplicate request then
discard this packet
else
save R in cache for §
if arrived at D then
send Route Reply with R
else
if route found in route cache then
send Route Reply with R and found route
11: else
12: append my address to R
13: flood this request to all neighbors
14: end if
15:  end if
16: end if

._.
o ©

Fig. 6. Pseudocode for Optimized Route Request

: INPUT: source address S, destination address D, list of hosts R
save R in cache for D
if arrived at S then
exit route discovery
send data using R
else
forward this packet to S
end if

Fig. 7. Pseudocode for Optimized Route Reply

to reduce routing overhead, the protocol needs to be optimized by allowing
intermediate nodes to aggressively participate in routing. Specifically, request-
broadcasting nodes can obtain a source route to S, and reply-forwarding nodes
can acquire a source route to D. They keep those route information in their route
caches for later use. Before re-broadcasting the request, intermediate nodes can
search their route cache. If there is a valid entry, they can respond without
re-broadcasting the request further. Most importantly, we can implement this
optimized DSR. by only re-programming APs, and we do not need to modify the
DSR services in a node-resident AE.

Figurel@land Figure[fshow the pseudocode for optimized DSR route discovery.
The underlined portions indicate the parts that have been added to our initial
simple implementation. We have not included our PLAN code, as with the simple
DSR implementation, it mirrors the pseudocode closely.

At intermediate nodes, route discovery changes in two basic ways. First, in
addition to flooding the route discovery packet, the packet also saves the partial
route in its cache (Line 5), thus increasing its knowledge of possible routes at
essentially no cost. Second, the packet looks in the intermediate node’s cache for
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a route to the destination (Line 9). If the route exists, then the node returns the
packet’s route record concatenated with the cached route (Line 10), thus short-
cutting the route discovery process. Route reply adds a single optimization,
replies also add routes to the route caches on intermediate nodes (Line 2).

Although in this example, new APs are used to perform a general optimiza-
tion, they can also be used to perform application-specific customizations as well.
For example, in the current protocol, if no route reply short cutting occurs, the
route that is chosen is the one taken by the first route request packet to arrive
at the destination. An application might desire to use a different metric, say
the route that has the largest bottleneck bandwidth. Assuming we had service
routines that could tell us link bandwidths, then we could easily program a route
request packet that would measure the bottleneck bandwidth and return a route
reply for any route request that arrived at the destination with a better value
than previous route requests.

7 A Hybrid Routing Protocol

We have seen how AN can be used to deploy new, improved, or customized pro-
tocols in a MANET environment. These examples show that AN’s adaptability
can help to accommodate the wide variety of environments MANETS face. Be-
cause of their dynamic nature, not only do we expect MANETS to be used with
widely varying network conditions, but we also would expect that those condi-
tions may well change while a network is operational, perhaps rapidly. In this
section, we show that AN can be used to adapt to such changing conditions.

In Section 2, we presented some background information on both DSR and
AODV. A key point is that AODV appears to work better when levels of mobility
are high, while DSR appears to work best when mobility is low. Thus, even if
the preferred protocol is in use, it is entirely possible that the level of mobility
may shift, making it desirable to change protocols.

Our approach is to build a hybrid protocol that can easily switch between
AODV and DSR as mobility levels change. The possible design space for such
hybrid protocols is immense and it is important to keep in mind that our goal
is to demonstrate that AN has achieved its goals with respect to adaptability,
not to explore this design space or to propose the “best” protocol. By showing
a fairly simple example, it should be clear that AN techniques will facilitate the
implementation, development, and exploration of a wide variety of such adaptive
protocols.

7.1 An Active Extension for the Hybrid Protocol

The key to creating a hybrid protocol that can switch rapidly between differ-
ing algorithms is to create a set of generic AE services that can be used by all
algorithms. Once this is done, we can then accomplish the actual switching be-
tween protocols quite easily using APs. This general idea is an important aspect
of AN, by providing generic, reusable, composable node resident components,
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Table 2. Service Functions for Hybrid Protocol

Functions Types

LookUp RIB string+host

(routing protocol, dest) = host*int*int
or = host list

Saveln RIB(dest, destSeq, host*int*int*host

hopCount, nextHop) or host*(host list)
or (dest, source route) = null

Get RREQ ID() null = int

Mark Dup Request host*int = null
(source, RREQ ID)

Check Dup Request host*int = bool
(source, RREQ ID)

Get SrcSeq() null = int

Get DestSeq(dest) host = int

we can then use packet programs to create many different protocols and enable
switching between protocols easily.

Here, we take this idea only so far by creating generic services common to
both DSR and AODV as shown in Table 2l The most important of these,
LookUp RIB() and SaveIn RIB(), manipulate a generic Route Information Base
(RIB), which is a combined form of DSR route cache and AODV route ta-
ble. Notice that we have used parametric polymorphism so that these functions
can take arguments and return values that are appropriate to either DSR or
AODV. The next three services, Get RREQ ID(), Mark Dup Request(), and
Check Dup Request (), are concerned with duplicate elimination during flood-
ing. These are good examples of general services that we might expect to see
reused by many different protocols and in fact, they have already appeared
in our simple DSR implementation. The final two services, Get SrcSeq() and
Get DestSeq(), are concerned with manipulating sequence numbers. Although
here they are specific to the AODV aspect of our protocol, we can certainly imag-
ine that with more experience, we could define a general set of sequence number
manipulation services that would be reusable across a variety of protocols.

7.2 An Active Packet for the Hybrid Protocol

Using the services above, we can now program an AP that can adapt to changing
conditions. If we actually wished to deploy an adaptable protocol, a key question
would be when to adapt. However, our goals is to show that adaptation is feasible,
not to research how best to do it. Thus we assume there exists some global policy
module that monitors mobility and informs us as to when to adapt. That AN
makes such a adaptive protocol feasible means that it would be interesting future
work to explore how to build such a monitor.
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fun routeRequestAtSrc(src, dst) =
if (mobility = 0) then
OnNeighbor (|dsrRREQ| (src, dst, Get RREQ ID(O, [ 1),
broadcast, getRB(), getSrcDev())
else
OnNeighbor (|aodvRREQ| (src, dst, Get RREQ ID(), Get SrcSeq(),
Get DestSeq(dst), 0), broadcast, getRB(), getSrcDev())

© 00 ~NO O W N -

fun dsrRREQ(src, dst, id, srtRecord) =
10: if(not Check Dup Request(src, id)) then (

11:  Mark Dup Request(src, id);

12: SaveIn RIB(src, srtRecord);

13: if (thisHostIs(dst)) then

14: dsrRREP(src, dst, srtRecord, reverse(srtRecord))
15: else ( (* intermediate nodes *)

16: let val myAddr = thisHostOf (getSrcDev())

17: val newSrtRecord = myAddr::srtRecord

18: in ( try (

19: let val srcRt:(host) list = LookUp_RIB("DSR", dst)
20: in dsrRREP(src, dst, listcon(reverse(srcRt),

21: newSrtRecord), reverse(srtRecord))

22: end )

23: handle NotFound => (

24: OnNeighbor (|dsrRREQ| (src, dst, id, newSrtRecord),
25: broadcast, getRB(), getSrcDev())

26: ) ) end ) )

27: else () (* dup req. discard *)

28:

29: fun aodvRREQ(src, dst, id, srcSeq, dstSeq, hopCount) =
30: if(not Check Dup Request(src, id)) then (

31: Mark Dup Request(src, id);

32: SaveIn RouteCache(src, srcSeq, hopCount+1l, getSrc());
33: if (thisHostIs(dst)) then

34: aodvRREP(src, dst, dstSeq, 0)

35: else ( (% intermediate nodes *)

36: try (

37: let val rt_entry: (host*devxint*int) = LookUp_RIB("AODV", dst)
38: in (

39: if (dstSeq > #3 rt_entry) then (

40: OnNeighbor (|aodvRREQ| (src, dst, id, srcSeq, dstSeq,

41: hopCount+1), broadcast, getRB(), getSrcDev()))

42: else

43: aodvRREP(src, dst, #3 rt_entry, #4 rt_entry)

44: ) end )

45: handle NotFound => (

46: OnNeighbor (|aodvRREQ| (src, dst, id, srcSeq, dstSeq, hopCount+1),
47: broadcast, getRB(), getSrcDev()) ) ) )

48: else () (* dup req. discard *)

Fig. 8. PLAN for Hybrid Route Request
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Figure[8 shows the PLAN program for hybrid routing request. The AP for the
hybrid route request contains three functions: routeRequestAtSrc (), dsrRREQQ),
and aodvRREQ(). The source, S, evaluates routeRequestAtSrc() and decides
which protocol to use. At low mobility, S injects a DSR route request packet by
calling an OnNeighbor () that evaluates dsrRREQ() on all the neighbor nodes
(Lines 2—4). At high mobility, S spawns a child AP that executes aodvRREQ () with
the appropriate sequence numbers and a hop counter (Lines 5-7). The two func-
tions, dsrRREQ () and aodvRREQ (), contain the algorithm for the route request of
the corresponding routing protocol.

In the interest of space, Figure[8shows only our functions for the route request.
The complete AP would include the route reply functions as well. When there
is valid information for the request (on intermediate nodes or the destination
node), a reply packet is generated by the function call, dsTRREP() (Lines 14
& 20) or aodvRREP() (Lines 34 & 43). The optimized DSR protocol allows
intermediate nodes to reply to the request (Lines 19-22). In replying with cached
information, the reply-generating node needs to concatenate the route record and
cached information (Lines 20-21). In AODV, the destination sequence number
is compared to validate freshness of the cached information (Line 39)E

7.3 Discussion

Our results show that it is not difficult to take two protocols that are similar
in structure, but which differ in many key details and essentially combine them.
But what if the protocols differ significantly in their basic structure? An obvi-
ous example would be our current reactive algorithms compared to proactive
algorithms which always maintain routes to all destinations. Designing a system
that adapted between reactive and proactive would be more challenging than our
current approach. However, the key point is that if, such a hybrid was designed,
AN would make it easier to deploy and evolve. However, it is important to be
clear that AN is just an implementation and deployment approach, it offers no
silver bullet for making hard design problems easier.

7.4 Simulation of the Hybrid Protocol

One significant limitation of our MANE based implementation is that it is diffi-
cult to generate meaningful performance results. This is because MANE nodes
are virtualized and typically run many instances on each real node and because
the physical network is emulated by using unicast UDP transmission. Thus it is
impossible for us to usefully quantitate the overheads imposed by our approach.
Despite this, and despite our goal not being primarily to explore the design of
hybrid routing algorithms, we still wanted to see if we could show that such an
algorithm could indeed result in improved performance when faced with chang-
ing mobility. To explore this question we simulated our algorithm as well as DSR
and AODV.

3 In PLAN, #n returns the n-th element of a tuple. In Figure B, #3 of rt entry is a
destination sequence number and #4 is a hop count.
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Experimental Setup. As a simulator, we used ns-2, which is a discrete event
simulator widely used in networking research [2I]. As a measure of performance,
we used the Packet Delivery Ratio (PDR). PDR is the ratio of the number of
packets received to the number of packets transmitted and larger numbers are
better. For a direct comparison, we used CBR traffic rather than TCP traf-
fic because congestion control and flow control offer different loads according
to network conditions for TCP. Each node moves according to the “random
waypoint” model [I2], in which the nodes repeatedly move and then pause. In
this model, the pause time and the movement speed characterize the mobil-
ity of the network. In each simulation, the same scenarios of movements and
traffic are used for DSR, AODV, and the hybrid protocol. The reported values
are averages taken from ten simulations under different movements and traffic
scenarios.

The packet size is 512 bytes, and 4 packets are generated per second. The
number of CBR sources is 25 out of 50 total nodes. For each simulation, 50
nodes move around in a 1000 m x 1000 m square space for 1500 seconds. To
simulate changing mobility, we divided the simulation time into 3 parts of 500
seconds each. In the first part (0-500 seconds), there is no movement and the
network is stationary. In the second part (500-1000 seconds), all the nodes move
at a maximum speed of 10 m/s with a pause time randomly selected between 0
and 250 seconds. In the last 500 seconds, the maximum speed is 20 m/s and the
pause time is 0 seconds. For the hybrid protocol, initially DSR is used and as the
mobility increases the nodes switch to AODV. Specifically, during the first half
of the simulation, route control packets follow DSR semantics and data packets
are routed using DSR. After 750 sec., the interface for the routing protocol is
changed to AODV and route control packets follow AODV semantics. For the
simulation of DSR and AODV, we used the existing ns versions developed by
the Monarch project [22].

1
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Fig. 9. PDR over time for DSR, AODV, and Hybrid
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Results. The simulation results are shown in Figure @l The x-axis is simulation
time and the y-axis is the PDR. We observe that in general as mobility increases,
the PDR decreases because of more frequent link failures or changes. However,
DSR and AODV have different rates of decrease and there is a crossing point
where which is superior changes. In particular, while DSR’s is better than that of
AODV under low mobility, DSR shows more degradation as mobility increases.
On the other hand, AODV is relatively robust to changes in mobility.

Not surprisingly, since the hybrid protocol switches between DSR, and AODV,
its performance basically follows the better protocol in the whole range of mobil-
ity. At low mobility, the hybrid protocol adopts DSR’s aggressive route discov-
ery and caching scheme and it performs similarly to DSR. However, as mobility
increases, it works like AODV and becomes robust to increased mobility. The
region from 500 to 750 seconds is the only exception, because during that period,
we have not switched away from DSR. From the simulation results, we see that
the hybrid protocol is adaptive to network mobility and suitable for networks
under varying mobility environments.

8 Conclusion

In this work, we have demonstrated how AN can be used to deploy, evolve, and
adapt ad hoc routing protocols. In some cases, this has used both heavyweight
AE programmability and lightweight AP programmability. However, we have
also seen that if the right generic services can be provided, lightweight AP pro-
grammability can be a powerful tool by itself. These demonstrations argue that
AN has achieved its initial goals of facilitating network evolution and customiza-
tion, at least in this domain. Further we believe these demonstrations show than
AN can play a significant role in building MANETS that are easy to deploy, ex-
periment with, and which can respond to the challenges of the diverse MANET
environment.
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Abstract. TCP assumes that packet losses are due to congestion. Un-
fortunately, for the increasingly common case of wireless last hops, this
may not be the case. The result is poor TCP performance. There has
been significant research into this problem, but the solutions either re-
quire widespread changes to the network, or are architecturally limited.
Network evolution of this sort is exactly the target of Active Net-
working (AN). We claim that if some network nodes were AN capable,
the range of feasible and deployable solutions to this problem would be
greatly increased. We support our claim by presenting a model and archi-
tecture of how AN might be deployed to address this problem. We then
use this model and architecture to motivate a series of concrete imple-
mentations that address various aspects of the problem. These include
an implementation of adaptive link control and of the Snoop protocol.

Keywords: TCP, wireless, Active Networking.

1 Introduction

The Transmission Control Protocol (TCP) is one of the central protocols of the
Internet. Further, the widespread availability of IEEE 802.11 wireless LANs have
made networks in which at least the last hop is wireless common. TCP’s conges-
tion control mechanisms assume that all packet losses are caused by congestion.
Unfortunately, for wireless links, this is a poor assumption. The result is that
over the many networks with wireless hops TCP performs poorly [I].

An obvious solution is simply to do the necessary research to understand how
to mix TCP with wireless links and then deploy those solutions throughout the
Internet. Not surprisingly, the first step, researching a solution has had significant
progress [23J4I5/6]. The most general solutions require updating both the TCP
implementations on the end hosts and at least some of the routers handling wire-
less traffic. Unfortunately, in today’s Internet, such an update is very difficult to
achieve. As a result, there has also been significant work on solutions that do not
require updating the end hosts (or perhaps only the one connected wirelessly),
essentially restricting the design space to transparent modifications of the bases-
tation connecting the wired network to the wireless one [45]. Unfortunately, this
architectural restriction can have adverse performance implications [7].

The goals of Active Networking (AN) are to facilitate network evolution and
customization. Our claim is that if we had a network that incorporated AN in
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at least some its nodes, the range of feasible and deployable solutions to the
problem of TCP over wireless would be greatly increased. Of course, if AN in its
most general form penetrated everywhere, it would clearly solve this problem,
because it would be easy to simply deploy the best, most general solutions and as
new solutions were developed to deploy them. Here we are interested in exploring
the implications of more limited AN penetration on possible solutions.

In addition to presenting background material on TCP over wireless and our
AN approach and platform, we make our case in two ways. First, to a large
extent the issues at hand have to do with implementation architecture. Thus
a key part of our argument is a presentation of a model of TCP over wireless
systems that lays out the possible design space, followed by a consideration of
the high-level architectural issues. Second, to make things concrete, we present
implementations of some of the possible solutions.

To implement our demonstrations, we have chosen to use our Mobile Active
Network Environment (MANE) [8]. MANE is the most recent embodiment of
our work on PLAN [9/T0] and is a direct decedent of PLANet [I1]. Like our
earlier work, MANE combines programmable Active Packets with downloadable
node resident Active Extensions. MANE goes further than any of our PLANet
implementations in its support for Active Extensions since it provides not just
for “plug-in” extensions, but also for “dynamic-update” extensions [12I8].

The remainder of this paper is organized as follows. Section 2 presents back-
ground material on TCP over wireless. Section 3 presents our model and architec-
tures and fundamentally addresses the question “How can AN Help?” Sections
4 and 5 present specific implementations and discusses alternative approaches.
Section 6 presents performance evaluation and Section 7 concludes the paper.

2 TCP Background

TCP is a connection-oriented transport layer protocol responsible for end-to-end
reliable data transmission. There are several problems with TCP’s functionality
and performance over wireless links. Over such links, there may be more fluctu-
ation of bandwidth and delay than in typical wired networks, stressing TCP’s
ability to adapt. A key problem of TCP over wireless links arises because TCP’s
error recovery and congestion control are closely coupled due to the assump-
tion that packet drops are only caused by congestion. Although this assumption
is valid over wired links, wireless links are lossy and cannot be assumed to be
reliable despite their link-level error recovery schemes [I3]. These points are re-
inforced in the literature, where it has been shown that TCP’s performance
significantly degrades over wireless links [I]. A variety of solutions have been
proposed for the problem of TCP over wireless links [2]. They can be classified
into two main categories: End-to-end and Transparent.

End-to-end solutions require modifying TCP at both end points while main-
taining end-to-end semantics [2I3IT4/T5IT6]. These approaches are based on the
distinction between congestion losses and corruption losses [T4/17]. The draw-
back of these approaches is that they require fundamental changes to TCP on the
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hosts. The need to replace already deployed versions of TCP means that deploy-
ment of these approaches will be difficult and slow. Besides, this approach needs
more care because it is unclear that the modified TCP will perform well both on
wired and wireless links. From experience, we see that it may take time to find
problems of newly deployed protocols that were thought to be well-designed.

In the transparent approach, link-level losses are hidden from the transport
layer [4I5lJ6]. These approaches attempt to improve TCP performance either by
using enhanced link control schemes [] or by utilizing Performance Enhancing
Proxies (PEP) [I8I516]. Therefore, existing hosts operate normally without know-
ing whether the connection is over wireless or wired links. The main advantage
of these approaches is that they can more practically be deployed incrementally.
It is easier to modify link-layer protocols on the nodes with wireless links than
the TCP protocol deployed on every end-host. However, as we will see from the
TCP snoop protocol, link layers may be aware of the transport layers’ semantics
and session state information. In addition, this approach has the possibility of
redundancy, inefliciency, or even ineffectiveness [7].

3 How Can Active Networking Help?

Our goal is not to devise fundamentally new schemes for solving the basic prob-
lem of TCP over wireless links, but rather to show how AN could be used to
help to implement and deploy existing schemes. At a high-level, this is an ar-
chitectural question, where and in what form can AN be useful? To answer this
question, we begin by creating a model of the underlaying system. The section
concludes by considering a variety of architectures that map AN capabilities on
to this model. The rest of the paper is principally an exploration of some specific
instances of these mappings.

3.1 Model

The model of a TCP session shown in Figure [I] captures many of the key ar-
chitectural issues. Communication is between a Mobile Host (MH) and a Fixed
Host (FH). A Base Station (BS) connects the wired network where the FH re-
sides to the wireless one where the MH resides. Unlike most of the related work
discussed above, we include the case where the MH may need multiple wireless
hops to reach the BS. Also, the related work focuses on the case where the bulk
of the data is being transmitted from the FH to the MH. In general, we are also
concerned with the case where the MH is the primary source of data.
Figure[llalso illustrates some of our thinking about where and what kind of AN
technology might be deployed. We subscribe to the SwitchWare [9] architecture
of AN, in which there are both active packets (APs) containing executable code
and active extensions (AEs) which are downloaded dynamically to modify or
extend nodes. We assume that we have full control of the MH and thus can
expect that both APs and AEs can be used there when needed. Similarly, we
entertain the possibility that the wireless network is “all active” and thus that
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Fig. 1. AN model for TCP over wireless

we could potentially deploy both AEs and APs there. Three possibilities exist
for the BS. First, if the BS can employ no activeness, then we are restricted to
end-to-end solutions (and must have an active enabled FH). Second, perhaps
for security reasons, the BS may allow AP processing, but not allow AEs to be
downloaded. Finally, the BS may support both APs and AEs. The intermediate
links between the BS and FH are not a source of the problems we are trying to
address and so without loss of generality, we can assume they are not “active.”
However, in the case that the BS is not “active,” some BS-centric approaches
will work if deployed at an intermediate node. Finally, the FH has the same
basic options as the BS. Of course, it is likely that a MH will have more control
over the BS than the FH, so it is likely that in practice the FH will allow fewer
“active” options than the BS.

Finally, Figure [ also touches on the issue of layer-crossing. The problems
we are addressing come fundamentally because TCP violates the basic layering
principles of the network by making an incorrect assumption about the nature of
the wireless physical layer. Thus it is not surprising that many of the approaches
to solving these problems also violate layering. In fact, one of our premises is
that since AN can support flexible controlled layer-crossing, it is well suited to
these solutions. Thus the figure shows which layers we expect to be the most
“permeable” as well as at which layers we most expect to deploy either APs
or AEs. One case that is not illustrated is the use of “shim” layers. These are
simply layers that are inserted between existing layers.

3.2 Requirements, Architecture, and Capabilities

Given the basic system model, we state two system requirements, consider the
possible architecture of solutions and discuss several AN capabilities that poten-
tially play an important role in the solution space.
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The first requirement is preservation of TCP’s end-to-end semantics: reliable,
in-order, duplicate free delivery. We view this as a strict requirement of any so-
lution; taking the view that these semantics define what TCP is and that any
system that does not provide these features is not TCP. The second requirement
is backward compatibility. Since in some scenarios the possibility exists of using
AN to modify the end hosts implementation of TCP, we do not view this as a
strict requirement. However, many other scenarios exist that deny this possibil-
ity and so it is important to consider. Since we view the MH as fundamentally
more changeable than the FH, backward compatibility issues focus at the FH.
Backward compatibility then takes two forms. First are systems where the FH
is “active,” but the TCP implementation is not. Such systems admit end-to-end
approaches, but must mask any “activeness” from the TCP layer. Second are
systems in which the FH is unchangeable and transmits standard TCP segments.
In this case, any “activeness” must be masked before the FH. Given our assump-
tion that the Internet is not active, this means “activeness” must be masked at
or before the BS. In general, we would like to be able to support “islands” of
AN functionality isolated by conventional networks. We will illustrate how this
may be done in Subsection 3]

In our view, there are two basic architectural approaches: horizontal and verti-
cal. The horizontal approach works between peer layers and does not cross layer
boundaries. For example, link layer protocols over wireless hops can adaptively
cope with fluctuating channel conditions and reduce link-level errors. An impor-
tant special case is when the peer layers are dynamically inserted (and removed)
shim layers. This is essentially the idea of Protocol Boosters [19]. In Section [4]
we will discuss how our implementation system makes this idea especially use-
ful. In contrast, the vertical approach allows layering violations and information
sharing between layers. For example, the BS is allowed to cross layers in dealing
with TCP-aware processing. To avoid congestion control on end hosts, the BS
attempts to foil fast retransmit by adaptively manipulating duplicate ACKs.

One of the key AN capabilities that can be leveraged to assist us is the ability
to adapt quickly, perhaps even on a packet-by-packet basis. This ability derives
from the fact that the code (or data used by that code) contained in APs can
change in each packet. We will show an example of this based on link error
control in Subsection €3l A final AN capability of importance centers on AEs.
AEs can be dynamically downloaded and can add to or modify the behavior
of node resident code. The implication of this is that even protocols that need
new or modified node resident functionality can be incrementally deployed on-
the-fly. As an example, consider a MH that wishes to use an enhanced protocol
that requires node-resident functionality at the BS. Assuming the BS supports
AEs, then the MH can simply extend the BS. Essentially BS has been adapted
to support the new protocol.

4 Horizontal Adaptive Link Error Control

One obvious approach is simply to improve the error characteristics of the wire-
less link. As our first example, we consider how to use the horizontal approach to
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1: fun checkCRC(chk, crc) =

2: let val crcCalcul = crc32(chk)

3: val nexthop = defaultRoute(getSrc()) in

4: ( if(crcCalcul = crc) then (

5: eval(chk);

6: OnNeighbor (|deQueue| (), #1 nexthop, getRB(), #2 nexthop)
7: ) else ()

8: ) end

9:

10: fun arq(dst, chk) =
11: 1let val crc = crc32(chk)

12: val nexthop = defaultRoute(dst) in

13: ( enQueue(|checkCRC| (chk, crc), #1 nexthop);

14: OnNeighbor (| checkCRC| (chk, crc), #1 nexthop, getRB(), #2 nexthop)
15: ) end

Fig. 2. PLAN for basic ARQ

implement this idea. The tricky issue is that how best to do this is a function of
the link error rate, which is changing dynamically. If the error rates are very low,
it might make sense to have no link-level error correction. At higher, but still
moderate error rates, a basic ARQ scheme is employed because of its simplicity
and low overhead. However, as error rates increase, frequent retransmissions de-
grade performance. Thus at high rates, to control errors more efficiently, FEC is
added into ARQ. By combining two coding procedures, hybrid ARQ/FEC can
get the benefits of both [20021]. In this section, we show how PLAN/MANE can
be used to implement this adaptivity using a shim layer. For adaptive link error
control, we place the shim layer between the link layer and network layer.

4.1 Basic ARQ

We begin with a simple ARQ scheme. For simplicity, we assume we have only
one wireless hop. Thus we expect the round-trip times seen by the link-level
ARQ to be small. Therefore, we adopt an idle RQ or stop-and-wait AR scheme
rather than a selective-repeat ARQ or go-back-N ARQ scheme [22]; however it
would be straightforward to include other ARQ schemes when desirable. In that
case, we would not need to change the node-resident services, but would use a
different PLAN program containing the required ARQ algorithm.

Figure 2] shows the PLAN code for our ARQ scheme. This code contains
the ARQ scheme in chunks, such as CRC calculation, timeout and retrans-
mission, and ACK reply. For error detection, the sender calculates a CRC-32
(Line 11) and sends a new chunk (checkCRC) containing the original chunk and
the corresponding CRC (Line 14). It also stores the packet in the interface queue
for retransmission (Line 13). The destination evaluates the chunk, thus evoking
checkCRC, which executes to compute the CRC of the received chunk and com-
paring it with the original CRC (Lines 2,4). If the results are the same, the
original chunk is evaluated on the destination (Line 5). The destination is also
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required to generate a chunk to invoke the deQueue() function on the sender.
This chunk works like an acknowledgment and frees the packet in the interface
queue (Line 6). Note in practice, this ACK chunk might also implement other
functionality as well, such as updating an RTT estimate. This particular code
is specialized for a single wireless hop because it always does the CRC check
on its neighbor. However, it could be used from either the BS or the MH. Fur-
ther, it would be easy to generalize this approach to support multiple wireless
hops. In this case, if transmitted from the BS, it would simply defer execution
of checkCRC until it reached its final destination and it would also need to carry
with it the address of the BS to provide the “ack” with a destination.

4.2 ARQ/FEC

By utilizing ARQ/FEC at high error rates, we can maintain constant throughput
at the expense of encoding/decoding overhead and complexity. The code for
ARQ/FEC is similar to that for the basic ARQ. The key difference is that before
the original chunk is transmitted it is encoded using Reed-Solomon coding and
then when it is received, it is decoded. The code for this case can be found in
Song [23]. By including the FEC strength in the chunks, we could control the
level of error correction on a packet-by-packet basis.

4.3 Adaptive Link Control

Given basic ARQ and ARQ/FEC the question is how to combine them so that
the appropriate one is used based on the quality of the channel. Figure[3 presents
code which does this when sent from a FH. It depends on the BS to identify
itself by returning true when isThisHostBS as well as to maintain a measure of
channel quality, queried by isChanGood. The basic idea is that the packet single
hops through the network (Lines 2,17) looking for the BS (Line 3). At the BS,
it queries the channel state (Line 4) and if it is good, it uses no error control
scheme (Line 5). If the channel is not as good, it uses either basic ARQ (Lines
9,10) or ARQ/FEC (Lines 13,14). Note checkCRC is the same as the previous
code and decode is used for RS decoding. The fact that the algorithm is encoded
in the packet means that we can apply this adaptation on a packet by packet
basis. This is quite similar to protocol boosters, except that the packet itself
decides whether “boosting” is needed or not.

4.4 AN for Channel Monitoring

For adaptive link control, we need to track the state of the channel. One approach
is for the sender to use ACKs (or rather their lack) to tell when the channel is
bad. With AN it is easy to do better. The key observation is that the receiver
is in the best position to monitor the channel, while the sender is the one that
needs this information. Assuming the receiver records channel information, we
can use APs to query this state.

Figure @ shows the code for an out-of-band channel monitor. The function
getChanInfo() (Line 2) defines a standard interface to get information on chan-
nel characteristics. This function returns various channel information depending
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1: fun adapLink(dst, chk) =

2: let val nexthop = defaultRoute(dst) in

3: (if(isThisHostBS()) then (

4: if (isChanGood (#1 nexthop)) then

5: OnNeighbor (|noControl| (chk), #1 nexthop, getRB(), #2 nexthop)
6: else (

7: enQueue (|adapLink| (dst, chk), #1 nexthop);

8: if (isChanSoSo(#1 nexthop)) then (

9: let val crc = crc32(chk) in

10: OnNeighbor (| checkCRC| (chk, crc), #1 nexthop, getRB(),

11: #2 nexthop) end )

12: else ( (x if channel is worse, use RS coding *)

13: let val codeword = fecEncoding(chk, "RS", 255, 223) in

14: OnNeighbor (|decode| (codeword, "RS", 255, 223), #1 nexthop,
15: getRB(), #2 nexthop) end ) ) )

16: else

17:  OnNeighbor(|adapLink|(dst, chk), #1 nexthop, getRB(), #2 nexthop)
18: ) end

Fig. 3. PLAN for Adaptive Link Control

fun report(indicator) =
let val measure = getChanInfo(indicator)
val src = defaultRoute(getSrc()) in
OnNeighbor (|print | (measure), #1 src, getRB(), #2 src)
end

fun probe(dst) =
let val nexthop = defaultRoute(dst) in
OnNeighbor (|report| ("RSS"), #1 nexthop, getRB(), #2 nexthop)
10: end

O 00 ~NO O W N -

Fig. 4. PLAN for Monitoring RSS

on the parameter, indicator, such as the Received Signal Strength or Signal-
to-Noise Ratio. The code composes a query and sends it (Line 9). The query
executes on the receiver and returns the result to the sender (Line 4). Note that
this is much more flexible than the conventional approach, which would require
specifying a special packet format and protocol for such queries.

An important variation would be to piggyback the query chunk on a data
packet. This is easy to do because chunks are data and it is easy to compose
various chunk oriented calculations. The result is that such queries can be done
without sending additional packets and yet remain transparent to the data flow.
This ability to piggyback control on data transparently, solves a key problem
with Protocol Boosters [19], controlling when to add or remove a booster.

Finally, consider a system like IEEE 802.11 which precedes each data trans-
mission with a request-to-send (RTS)/clear-to-send exchange(CTS). Then the
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RTS could act as a channel probe, while the CTS could return the channel state
to the sender, which would then be able to choose a error correction scheme
or FEC strength. In a conventional network, this would require changing the
format and function of the RTS and CTS. In however, if the wireless link sent
APs for its RTS and CTS, then adding to or modifying the function of these
parts of the protocol would become just a matter of packet programming.

5 Vertical Snoop Protocol

Even with adaptive link error control, packet drops may be still possible and the
resulting congestion control action can cause performance degradation. In verti-
cal adaptivity, collaboration and information sharing across layers on the BS are
allowed to adaptively control the TCP flow. We claim that AN is advantageous
because AN facilitates cross-layering implementation by allowing layer-specific
information to be included in active packets.

In this approach, the lower layer protocols on the BS are aware of TCP se-
mantics and adjust TCP flow information to prevent congestion control from
taking place due to packet drops over wireless links. Further, by following up
the parts of the end hosts’ TCP Control Block (TCB) [24], the BS can take
actions on incorrect congestion control, such as adjusting RTT measures and
screening three duplicate ACKs. Using packet programming, we can deploy the
snoop protocol onto the BS, which can improve performance of TCP connections
from fixed hosts (FH) to mobile hosts (MH).

We have implemented these ideas in the form of a PLAN/MANE implemen-
tation of the snoop protocol, but space does not permit us to exhibit the code.
It can be found in Song [23]. Substantial parts of the snoop protocol are im-
plemented in active packets and this example shows how to easily deploy a
new protocol. There is no need to update protocol stacks on the BS. Service
extensions on the BS mainly implement the cross-layering mechanisms. As an
adaptation layer, the service extensions transform active packets to TCP seg-
ments or vice versa. Evaluation of the PLAN packet on the BS actualizes the
snoop protocol and enhances TCP performance over wireless links. This is fun-
damentally different from the Proxy Transport Service [25] in that our approach
is transparent and maintains TCP semantics.

6 Performance Evaluation

In this section, present our performance evaluation, starting with some details
of our implementation and the network setup. We then present a comparison of
our adaptive link protocol with the nonadaptive protocols it is composed of. We
conclude with an evaluation of our snoop protocol.

6.1 Evaluation Setup

To support our current experiments required some additions to the version of
MANE discussed in []]. The most significant was an implementation of an active
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Fig. 5. Comparison of Link Error Control Techniques

version of TCP. To achieve this, we added a data structure called the Transmis-
sion Control Block (TCB) [24]. Each TCP host maintains information about
TCP connections and TCB is used to store this information. Among the vari-
ables maintained in the TCB, we added the basic ones needed for the conges-
tion control and the sliding window protocol, which included sequence numbers,
round trip time (RTT) measures and variance, timeout values for retransmis-
sion, and the congestion window. In addition to TCP, we added the functions
for calculating a 32-bit Cyclic Redundancy Check (CRC-32) to our frames as a
Frame Check Sequence (FCS) and for Reed-Solomon encoding/decoding [26].

In all of our experiments, we used the same network topology. The MH and
the FH are connected through the BS. The MH is one wireless hop away from
the BS, and the BS is connected to the FH through one router using wired links.
We emulated the lossy wireless channel by randomly changing bits in packets.
The number of corrupted bits is determined by the channel’s Bit Error Rate
(BER); the channel’s BER is changing on a scenario basis.

6.2 Active Link Error Control

In Figure Bl we present a performance comparison of four link error correction
schemes: no error correction, ARQ, ARQ/FEC, and the adaptive hybrid protocol
shown in Figure Bl Because we wanted to demonstrate adaptivity, rather than
experiment with channel monitoring, we had our channel monitoring functions
return the correct value, rather than trying to estimate it dynamically. In this
case, the MH is the TCP sender.
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Figure [ has time along the X-axis and goodput along the Y-axis. Initially,
the channel is not lossy, but its error rate increases at time 200 and then worsens
further at time 400. The individual protocols perform as we would expect, with
the no error correction case showing the strongest dependence on the error rate
and ARQ/FEC showing the least. The more interesting result is for the adaptive
protocol. At low error rate it equals or sometimes betters the performance of
ARQ. When it does better it is actually doing no error correction. When the
error rate increases, it is able to detect this and adapt using ARQ or ARQ/FEC,
respectively.

6.3 Active Snoop Protocol

Figure [0l shows a performance comparison of “regular” TCP when no snooping
is done at the BS and with our snoop protocol. In this case, the FH is the sender.
Again, time is along the X-axis and goodput is along the Y-axis. Initially, the
channel is not lossy, but its error rate increases at time 200 and worsens further at
time 400 and 600. As expected, when there are no or low errors, the performance
of the two versions is similar. However, as error rates increase the snoop protocol
outperforms the regular TCP by suppressing unnecessary congestion control.

7 Conclusion

TCP is not well suited to networks with wireless links. Conventional solutions to
this problem are limited by the need to be transparent and backward compatible.
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AN can ease these limitations by greatly increasing the possible implementation
and deployment strategies. We demonstrated this by first modelling the TCP
over wireless system and then showing how AN architectures and capabilities
can apply to that model. We then showed a number of implementations that
used these architectures and capabilities to help wireless TCP performance. We
used MANE to evaluate the performance of these implementations, showing that
they behave as expected.

We expect that future work will focus on further exploring our two archi-
tectural styles. For example, as one of the horizontal approaches, the network
layers of the MH and the BSes could adaptively change paths between them so
that link fluctuation do not affect the end-to-end flow. We could expand this
approach into support for handoff. Another horizontal approach would be to
adaptively change the Maximum Transmission Unit of the wireless link, so that
smaller packets are sent when the link has a high bit error rate. On the other
hand, if the FH is AN-capable, we can develop more efficient adaptive control
over TCP flows. We expect to apply this advantage to handling handoff, during
which harsh link deterioration and route changes happen at the same time.
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Abstract. Distributed denial of service (DDoS) attacks in the Internet
pose huge problems on nowadays communication infrastructure. Attacks
either destroy information or impede access to a service. Since the sig-
nificance of the Internet to business and economy is growing rapidly,
efficient protection mechanisms are urgently required to protect hosts
from being infected and, more important, sites from being attacked. De-
tection of DDoS attacks requires deep packet inspection at link speed,
and context-dependent packet handling for countermeasures. This func-
tionality is not achievable with nowadays commercial high-performance
routers.

In this paper, we therefore present our problem space exploration
of DDoS attacks and propose a flexible service architecture for detection
and filter mechanisms to counteract DDoS attacks. To achieve the perfor-
mance required for backbone routers together with the flexibility needed
for services counteracting DDoS attacks, we base the proposal on our
PromethOS NP router platform that manages and controls hierarchical
network nodes built of network and host processors.

1 Introduction and Motivation

Present day communication infrastructure has been seriously threatened by
large-scale distributed denial of service (DDoS) attacks in the Internet. These
attacks destroy information or hinder customers from accessing specific services.
Services provided in the Internet like on-line stock trading, virtual travel agen-
cies or book-stores are very important to economy already today. The Economist
reported in May 2004 [3I]: “The 200m Americans who now have web access are
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likely to spend more than US$120 billion online this year.” But in eCommerce,
brief inaccessibility of services results in loss of business [3I]. Since the impact
of eCommerce on economy is expected to grow further, the risk of economic
damage resulting from a large-scale Internet attack increases [I1]. The situation
becomes more dramatic because the number of attacks increases at least at the
same pace as the impact of eCommerce does. Of further threatening importance
is the fact that newly discovered errors in soft- or hardware are exploited more
rapidly for fresh attacks [32].

The effect of large-scale DDoS attacks in the Internet correlates with the
number of infected hosts that launch attacks towards other sites. Hence the
threat emerges as more and more private and insufficiently managed hosts are
connected to the Internet by broadband lines. Home users are rarely aware of
the problems and dangers in the Internet nor are they able to manage and
protect their hosts effectively. But eCommerce flourishes not at least thanks to
the widespread use of the Internet by home users [31I]. Companies afford secu-
rity and system administration teams quite often, but they suffer from similar
problems.

To effectively protect the Internet, hosts need to be protected from becoming
an attacker as well as from being attacked at any site. It is hard if not unfeasible
to install protection mechanisms at this level of granularity without blocking
daily business. Hence, detection and countermeasures are required that approach
this problem at the level of border routers or gateways to protect larger areas in
the Internet.

Fighting DDoS attacks requires in-depth packet inspection to identify mali-
cious streams in the flood of traffic. With today’s commercial high-performance
routers, however, payload analysis is not possible, usually. Or if it is, the func-
tionality is coded either in firmware or hard-wired in the box. Attack schemes
vary a lot over time. In addition, the period becomes shorter between the first
detection of an exploit and the widespread launch of the attack. So, it is cru-
cial that large-scale DDoS attacks are defeated on routers as close to the core
of the Internet as possible. Specific Anti-DDoS components must be installed,
configured and removed on request. For obvious reasons, the deployment of the
specific detection and countermeasure components must not interfere with other
services. Further, they must be able to tackle the problem of known as well as
unknown attacks semi-automatically according to predefined policies.

Active Networking (AN) [30] has proposed the concept of execution envi-
ronments (EEs) to address the challenges of exchanging and extending service
functionality on the routers at run-time. So far, EEs have been instantiated only
on a single general purpose processor (GPP) as found in legacy personal com-
puters. But single GPP configurations are not able to cope with the demands of
nowadays border or backbone traffic in the Internet. To increase the degree of
programmability and simultaneously of flexibility at interface level, processor
manufacturers have proposed the architecture of Network Processors (NPs)
[14,15,22] to be embedded in network interface cards (so-called NP-blades).
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Built of control and packet processor&ﬁ7 they provide additional processing ca-
pabilities and capacity in addition to the host processors. A hierarchical network
node provides, thus, a perfect hardware platform for the envisioned Anti-DDoS
service since packet processors are able to process packets at line rate, and pro-
cessors on upper tiers provide the management and control functionality besides
room for further packet processing. However, it is extremely difficult to provide
a dynamically extensible router platform that provides the required abstractions
and is able to manage a hierarchical network node if component based services
must be able to span all tiers of the processor hierarchy. We propose PromethOS
NP [2425] as the dynamically code-extensible router platform for the envisioned
Anti-DDoS service. It provides the abstractions required for node-internal com-
munication among service components by which services are allowed to span
arbitrary processors. Further, it provides the mechanisms to install, configure,
instantiate and remove service components on any code-extensible processor of
the processor hierarchy. Hence, the goal in this paper is to propose an architec-
ture of an Internet backbone Anti-DDoS service for our powerful PromethOS
NP router architecture.

Therefore, we structure the remainder of this paper as follows: in section[2 we
present a problem-space exploration of detection mechanisms and countermea-
sures against large-scale DDoS attacks in the Internet to extract commonalities
required for our service architecture. We briefly present the concepts and archi-
tecture of PromethOS NP in section Bl In section [ we propose our Anti-DDoS
service architecture for PromethOS NP, and present related work in section [B
Our paper is concluded by section[f in which we give a summary and an outlook
to further work.

2 Large-Scale Internet Attacks

The main type of large-scale Internet attacks we focus on here is an initial
worm-driven [29] compromise of a large number of hosts, followed by an op-
tional Distributed Denial-of-Service (DDoS) attack that uses the freshly com-
promised hosts as attack platform. We identify three main activities [32] during
this type of attack: target identification, target infection and DDoS attack. The
first two activities together are also called worm propagation. Worm propaga-
tion can sometimes also be done in a single step, e.g. when host probing and
compromise can be done with a single data packet.

The attack activity can be started by a trigger, for example a time, reception
of a message from an attack control network (see e.g. [33]) or completion of
a specific number of infection attempts. It can be done in parallel to worm

1 NP vendors do not use a consistent naming scheme to refer to the code-extensible
processors: the Intel IXP-architecture refers to the first-level processors as micro-
engines while the IBM PowerNP identifies them as picoprocessors or core language
processors. Second-level processors are named differently, as well. For this reason, we
refer to the first level of processing engines as packet processors and to those of the
second level as control processors.
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propagation, however this usually impacts worm propagation speed negatively
and is generally not done.

We now describe the basics of the attack model in more detail and identify
common characteristics.

2.1 Activity 1: Target Identification

A vulnerable host offers network functionality that can be compromised. The
vulnerability can be located in an application, for example a P2P filesharing
client or web server, or in the operating system itself, e.g. in the network stack.
It is also possible to use several different vulnerabilities in worm propagation. In
order to recognize that a host is vulnerable, a vulnerable network functionality
has to be found on it. This is done by sending a specific probe over the network.
Probes consist of one or several specifically constructed packets that are sent to
a host. A probe can consist of several sub-probes.

2.2 Activity 2: Target Infection

After a vulnerable host has been identified, it still needs to be compromised.
This is done by using the vulnerability to transport to and start exploit code
on the target. This may involve a multi-stage process where several steps are
needed, each involving specific network activity. The end result is that the work
code runs on the target host and is able to propagate further from it. Note that
no complete host compromise is needed. Compromising a network application,
e.g. an email client, or part of an operating system may already be enough.
As an extreme case worms that use vulnerabilities in other worms (that have
previously infected the target) exist. The new host is now called infected.

A border case is single packet propagation, were target identification and
compromise are done with a single network packet, e.g. the Sapphire worm [5]
needs only a single UDP packet of 404 Bytes for a successful propagation step.
Single packet infection requires the use of a protocol that can transport data in
the first packet, like UDP. Many vulnerabilities also do not allow single packet
propagation, e.g. because several data transfers are needed. Code Red [9,3] is
an example of a worm that uses TCP with its three-way handshake [23]. As an
example of a multiple protocol infection, the Blaster worm [6], uses TFTP [2§]
to retrieve code in a second step of the infection, after an initial exploit was used
to initiate the second step.

2.3 Activity 3: Attack

The third step is to execute one or several attacks. Sets of compromised hosts
have also been used for other purposes, e.g. as relay for unsolicited commercial
email (SPAM), which is of interest to organized crime. This worm creation
purpose has been predicted by Schechter and Smith in [26] and recently been
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confirmed to exist in practice by the German computer magazine c’t [§]. In this
paper we only deal with the use of compromised hosts as attack platform for
DDoS attacks/

2.4 Detection and Possible Countermeasures

We differentiate between the terms byte-pattern, flow-pattern and traffic-pattern.
A byte-pattern is a sequence of bytes within a packet. A flow-pattern is a sequence
of packets that together forms a specific attack. A traffic-pattern is an aggrega-
tion of multiple flow-patterns that target the same site. We do attack detection
by trying to observe traffic anomalies. We argue that traffic-pattern need to
be analyzed for this. For the identification of packets belonging to a specific
attack, attack signatures need to be determined. Attack signatures can be de-
tected either by byte-patterns or flow-patterns. Once this has been done for a
specific attack, a countermeasure can be selected and activated. We base our
detection and countermeasure service on four fundamental functional elements
named Capture, Identification, Filter and Slowdown.

Data Capturing: In order to detect a worm during its propagation phase
in a high-speed network, access to more than abstracted traffic data (e.g.
NetFlow [7]) is desirable. One promising possibility is to obtain information
about specific suspicious traffic from abstract data without payload information
and then capture concrete packets to gain more insights. As an example, trans-
ferred worm code looks the same in most observed worms. If, e.g., a lot of TF'TP
transfers are observed, it would be desirable to find out whether most carry the
same payload. Furthermore, it is desirable to capture complete instances of the
transferred code. The same is true for the exploits used and for the packets sent
in a DDoS attack. This information can then not only be used to better under-
stand the worm, but is also essential in generating specific filters or slowdown
mechanisms and in identification of infected hosts.

Identification of Compromised Hosts: One countermeasure desirable is the
filtering of all traffic from infected hosts. This serves to block further infections
as well as attacks or other misuse of compromised hosts. It also serves to force
host operators to repair the compromised host software. In order to allow host
filters, infected hosts have to be reliably identified. Generally, this needs payload
information. The reason is that worms and DDoS attacks frequently use proto-
cols that are also used for other purposes. Without payload based detection of
infected and attacking hosts, the number of wrongly identified and blocked hosts
could be large and this type of countermeasure can do more damage than good.

Filters: Besides host blocking, it is desirable to filter attack traffic out based
on protocol and payload information. One reason is that the set of compromised

2 Since worm spreading and host infection might be the attack itself, we refer to the
combination of all three activities by the term attack if we do not state the different
activities explicitly.
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hosts may not always be identified fully, for example if some infected hosts
do not propagate the worm but wait silently after infection until they start to
participate in a DDoS attack. In a filter, it may, e.g., be desirable not to block
all HTTP traffic to a site under attack, but just a specific query or query type as
emitted by some known infected hosts. In order for this to work, byte-patterns
have to be identified and then a filter for these patterns has to be constructed
and installed on the fly.

Slowdown: A variant of a filter is a slowdown filter. Instead of dropping all
packets, it limits the bandwidth for packets or connections matching a signature.
The advantage is that legitimate use of the target over the network is still pos-
sible, but slower. This is especially useful when attack traffic cannot be reliably
identified. Filtering infection traffic to implement slowdown is hard. Fast worms
as have been observed in the recent past compromise most vulnerable hosts in a
matter of minutes. Still filtering infection traffic is worthwhile, since worms have
a tendency to stay active for months or longer and cause both network load
and new infections of the occasional newly installed and unpatched hosts. While
filters have a very high disruptive potential if used incorrectly or triggered by
an attacker as a type of indirect attack, slowdown is far more benign. Slowdown
filters may even be safe enough to be employed in an automatic fashion, at least
initially. Countermeasures will still require some human input at some time for
near future. However, they can buy humans time to think and to understand
what is happening.

3 PromethOS NP Router Platform

We propose the PromethOS NP [24}[25] router platform to introduce, map and
accommodate services, such as our Anti-DDoS service, on a hierarchy extended
active network node. Services as built of service components may span all pro-
cessing elements if required. To pave the way for the Anti-DDoS service architec-
ture, we briefly present the component based service model used on PromethOS
NP and the architecture of PromethOS NP with emphasizing specific compo-
nents that are required to control and manage this platform.

3.1 Component Based Service Model

Fig. [ visualizes the service model of PromethOS NP by a configuration that il-
lustrates the capabilities of the model. Services for PromethOS NP are described
as a graph of edges and vertices. Edges represent service components (empha-
sized with named boxes in Fig. [[l) and vertices denote interconnection points.
Service components provide data path functionalities. Classical data path func-
tionality, for example, is payload dependent packet filtering, counting or even
payload transcoding. Service components are configured and controlled by con-
trol components. A control component, as exemplified by F4 in Fig. [I may
control one or more service components. In addition, the control component it-
self may provide data path service functionality. Functionalities provided by the
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Fig. 1. Service Model

components depend on their implementation. While service components regis-
ter for data communication only, a control component may register for timed
events, too. At vertices, a service graph may be split into several subgraphs and
combined by fork and join operations, respectively. Service components register
with one data input and one data output port and bidirectional control com-
munication is provided between the service and the relevant control components
(symbolized by the connections between F4 and F2).

We refer to service components with the adjacent vertices by the term service
chain. A Service Control Bus (SCB) accompanies a service chain. It propagates
signals like packet discard notifications as well as the state of the service chain,
i.e. whether the service chain is currently processing a packet or whether it is idle.

3.2 Architecture of PromethOS NP

Fig. 2 depicts the architecture of a PromethOS NP node using a three-tier pro-
cessor hierarchyﬁ and a node control layer.

On all tiers, PromethOS NP provides dynamically code-extensible processing
environments (PEs). PromethOS NP creates a hierarchical EE by that an in-
terface to the hierarchical EE is provided only via the control layer. Internally,
PromethOS NP manages two different types of code-extensible PEs, in which
service components can be installed and instantiated. On the GPP cores, the
PE is implemented as an extended PromethOS EE [19] (cf. Host Processor Pro-
cessing Environment in Fig. ). This PE provides a binary compatible interface
to the PromethOS EE. In contrast to the PromethOS EE, that runs on a single
processor node only, the other PE (cf. Network Processor Processing Environ-
ments in Fig. @) is embedded in the hierarchical router platform and provides
the abstractions to build a service of distributed service components residing in
other PEs. On the PPs, a PE is instantiated that provides the mechanisms to
install and execute service components without stopping the PP.

The control layer contains components which are responsible for the whole
node. The Node Manager provides the interface to create a service at node
run-time and instructs the other components on the node to act according to its

3 The current implementation creates a three-tier hierarchical router platform for
nodes that are built of host processor and NP-blades. NP-blades consist of a con-
trol processor with a set of packet processors (Appl. Ref. Board [27] for the IBM
PowerNP 4GS3 [14]).
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decision. The Service Mapper creates the required map specification that pro-
vides the information to install and instantiate service components on specific
processors such that, first, a service can be created and, second, the resources
available are not overbooked. It instructs the PE specific Component Loaders to
load, instantiate, configure and unload service components. To better differen-
tiate between instantiated and uninstantiated service components, we refer to
the latter by the term module. Every module is identified by a module identifier
(ModID) that is unique for the whole hierarchical network node. The ModID
is used to query and re-configure the module at run-time. Service components
to be instantiated are retrieved by help of the Cache Controller. It is responsi-
ble to manage the node-local repository which contains service components for
PromethOS NP nodes. Upon reception of a request, it either compiles service
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components from source or retrieves a service component in binary format if
available. It does not deal with network-wide service component retrieval but
assumes the availability of these components in the node-local repositoryH The
Resource Information Database is required to keep track of resources available
and consumed. Therefore it interfaces with the Resource Controllers residing on
the different GPPs. Each PE is controlled by its Resource Controller. The Re-
source Controller configures and controls the Programmable Distributors (PDs)
according to instructions received from the Node Manager.

PDs implement the vertices of our service model on and between any pro-
cessors. Hence, they provide the mechanisms to bind a service chain to specific
flows. They are PE specific and provide the mechanisms required to forward
packets between service components. Two types of PDs are implemented. One
that interconnects service components on the same processor, and the second
one that interconnects service components residing on different processors.

In Fig. Bl we illustrate the architecture of a PD. PDs consist of a receiv-
ing, classifying and forwarding element [24]. While the receiving and forwarding
element eliminate the need of a service programmer to deal with the underlying
hardware platform, the classifier element is replaceable. It provides the inter-
faces like common service components but is required to communicate with the
receiving and forwarding elements along the SCB by a particular protocol.

Queue Element Dispatcher, Forwarder
—

Classifier A
Ctrl Ports

by

Classifier —|m

Y
|

\
Y

oy et L j -
- Classiﬁgr -
CtrlBus [l
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Fig. 3. Programmable Distributor

Packet classification is time-consuming. Therefore, we define cut-through PDs
to avoid unnecessary classification overhead if two adjacent components are only
linked directly. We extend the basic concept of service chains that consists of a
edge between two adjacent vertices to a set of edges for which no classification
and no inter-processor communication is required in between. On a PromethOS
NP node, service chains are identified by the first ModID that starts the chain.
A service chain is hooked to multiple outbound ports of a PD as well as multiple
different service chains are attached to a PD if required. Dynamic replacement

4 For proof-of-concept purposes, we have implemented a straightforward service com-
ponent fetcher that is able to retrieve service components from a remote repository
over a secured TCP channel if the service components are not locally available.
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of service chains is based on a selector logic per outbound port. This logic pro-
vides the required semantic to install, replace and remove service chains at node
run-time without disrupting other services. PDs on PPs are bound to the capa-
bilities offered.

Our Prozy Device Driver provides the mechanisms to communicate between
all processors of the processor hierarchyE This Proxy Device Driver supports
two types of communication channels between different processors. A fast path
provides the mechanisms to interconnect service components without additional
legacy classification overhead of the Linux Netfilter network stack architecture,
while a slow path along the Linux network stack provides the full flexibility of
iptables as described for PromethOS [19]. The Plugin Manager interfaces with
the Linux IP Stack, as well as with the fast path. Based on its ability, service
components may be executed on nodes with and without NP tiers. Moreover,
PDs are implemented as part of the Plugin Manager on GPPs regarding the
receiving and forwarding elements.

4 Anti-DDoS Service

Counteracting DDoS attacks requires continuous traffic observation and, if nec-
essary, the installation of countermeasures. Traffic observation and the insertion
of countermeasures, however, should not affect regular services. Therefore, we
propose a service architecture hereafter that provides the basis infrastructure
for the deployment of attack specific functionalities that mitigate the effect of
the attacks. The architecture has been designed such a way to make it possi-
ble to instantiate the four fundamental functional elements, namely Capture,
Identification, Filter and Slowdown (cf. Sec. [2), of our Anti-DDoS service.

4.1 The Service Architecture

Fig. @ visualizes our Anti-DDoS service architecture in a particular configuration
that consists of a basis service infrastructure and an attack specific Service Han-
dler. While the Service Handler must make the required functionalities available
to detect and counteract DDoS attacks, the other components are generic in the
sense that they provide the fundamental service architecture. Since the path via
the Service Handler creates the needed countermeasure functionality, we refer to
this path as the service path. Irrespective of the functionality provided, for the
PromethOS NP router platform service components are black boxes. As such
not only the service path but also the service infrastructure are built of service
components that provide the appropriate functionalities. The service specifica-
tion is used by the Node Manager that triggers the installation and instantiation
of the service as mentioned above. The service logic, however, is service specific.

5 Our Proxy Device Driver is based on the code delivered with the IBM Advanced
Software Offering Toolkit. It extends the original code base by a generalized, more
abstracted communication infrastructure with resource control mechanisms for a
hierarchical router architecture built of a multitude of NPs.
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As such, the service logic may contain mechanisms to request the installation or
removal of service components depending on service-internal policies. Due to this
autonomous, policy based service-internal management, our service architecture
provides the basis of a node-local autonomous service.

Service
/ Handler \ / Capturer |—

Packet | | pispatcher Counter |=| Dispatcher —»
Classifier
Polic Rate \
Handlzr \/ Controller Dropper ¥

Fig. 4. Anti-DDoS Service Architecture

We argue that this autonomous service provides a suitable basis for detection
mechanisms and countermeasures against well-known and unknown attacks. We
exemplify three different, particular service configurations to illustrate the appli-
cability of our service architecture for the mechanisms and measures introduced
in Section

— Without detection mechanisms or countermeasures installed, the Packet
Classifier assigns a tag to the incoming packets and sends the packet to
the first Dispatcher. Since no particular service path is specified by the tag,
the Dispatcher forwards the packet to the Counter. The Counter increments
tag-dependent counters and sends the packet to the next Dispatcher. This
Dispatcher then re-inserts the packet into the common routing/forwarding
path of the router.

— In case of a well-known attack, whose packets are classified according to spec-
ified criteria, our Anti-DDoS service with the detection and countermeasure
mechanisms are implemented in the following way. An appropriate policy
is given to the Policy Handler that creates the service path and configures
the Packet Classifier implementing the Capture service function. Policies are
specified beforehand and sent to the Policy Handler by service-external en-
tities. Packets matching the criteria are sent to the respective service path
(Identification). Service Handlers provide the mechanisms required to detect
packets that belong to an attack. Their mechanisms give the specific op-
erations necessary for in-depth payload inspection or multi-protocol attack
handling to detect, for example, the W32/Blaster worm [6]. Service Han-
dlers are installed on request to carry out the Filter or Slowdown service
functionalities, as well. Multiple Service Handlers may exist simultaneously.
A Service Handler signals the detection of a particular pattern to the subse-
quent Dispatcher. Depending on the service configuration, packets are sent
to the Capturer or to the Dropper.

— In case of unknown attacks, our Anti-DDoS service follows a different con-
figuration. These attacks, i.e. traffic anomalies, are detected by that the
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Rate Controller queries the counters periodically and compares the values
retrieved with specified thresholds. If the counters exceed these thresholds,
the Rate Controller informs the Policy Handler of the violating tag and pro-
vides the violated condition. This message initiates a service extension or re-
configuration process by the Policy Handler. The Policy Handler triggers the
installation of a violation specific service path and configures the Packet Clas-
sifier to dispatch packets that comply with the specific pattern accordingly.
Based on the possibility to extend services dynamically, specific detection
mechanisms can be provided to detect and analyze unknown traffic anoma-
lies. The Rate Controller is implemented to control traffic in an autonomous
way. Statistical information can provide the means required to detect ab-
normal traffic patterns. Policies bring the Policy Handler to, for example,
configure particular Droppers or Capturers as to implement the Capture,
Identification, Filter or Slowdown service mechanisms, respectively.

Packets can be sent to the Service Handler by mistake if, for example, a
packet matches a particular byte-pattern at the first classifier but the in-depth
packet inspection carried out by the Service Handler reveals that the packet
is not part of an attack. Were such packets simply discarded, denial of service
results although not all flows are malicious. To avoid such malfunctioning, false
positives must be re-inserted.

Attacks vary and provide attack-specific characteristics. These characteristics
are yet unknown and may require specific countermeasures that are neither con-
figurable with today’s routers nor implementable within today’s firmware. Large
hierarchical routers located in or close to the core, however, need to be prepared
to effectively mitigate future attacks without interruption of other services as it
would be required if firmware would need to be upgraded.

4.2 Hardware Constraints

PDs enable service designers to focus on the specific functionality to be imple-
mented according to a unified component model among all types of processors.
Thus the challenge remains to decide where to place which service component.
For the exploration of this problem space, we need to take hardware constraints
into account before we can propose an appropriate classification scheme.
Today’s packet processors provide very limited but highly specialized pro-
cessing capabilities. The programming flexibility known from general purpose
processors is not available there. For example, the number of timer events is
small. Since PPs are focused on squeezing out the most of possible performance
for packet processing, they are not well-suited for dynamic code updates. Mem-
ory is direct mapped; no address virtualization is available. This imposes hard
constraints on the code layout of service components for packet processors, and
makes the installation of code components at run-time extremely difficult. Fast
memory on the NPs is an extremely scarce resource. Different types of memory
exist therefore on an NP-blade. Packet processors differentiate between instruc-
tion memory and data memory. Often, the former provides room for a total of
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32 kilo-instructions [I4] only. Thus, the number of code components that can
be installed is very limited if we assume that additional functionality, like rout-
ing, must be provided by the NP besides our services. While PPs provide fast,
co-processor supported packet processing capabilities, control processors on the
NPs increase flexibility by general purpose processor architectures. In addition,
CPs are able to manage up to 2 GBytes of DRAM [16].

Packet processors are able to forward packets at line speed. But communica-
tion paths between service components on the PPs and those on the CPs are not
able to cope with the aggregated throughput of all PPs. Neither are today’s CPs
able to process so high packet rates fully themselves. For example, our proto-
type implementation with the IBM PowerNP 4GS3, we have been able to receive
packets at approx. 100 Mbit/s on the embedded PowerPC. while bi-directional
communication resulted in a maximal transmission rate of 42.7 Mbit/s [25]@ If
we assume a hierarchical network node with multiple NP-blades, router-internal
communication between NP-blades and the host processor is not able to cope
with the data rate either. Actual NPs, like the Intel IXP28xx family, are able to
forward packets lossless at rates of up to 20 Gbit/s [I7] on the packet processors.
Thus, forwarding all packets to host processors would overcharge any of them.

Hence, we argue that scalability of our node is achieved by that programmable
network interfaces will be equipped with NPs in the near future. Thus they pro-
vide a fully programmable GPP together with a potentially large set of optimized
and specialized PPs. Currently, control processors do not provide the processing
capacity to run data path service components with the required performance [25].
However, as processor technology advances, performance of control processors
will not be of a major concern. We can imagine that multi-core CPs are feasible
soon as separated memory channels for CPs and PPs are. Separated channels
are required such that the processing elements do not interfere with each othef]
when processing packets each. But challenge remains in deciding where to place
service components most effectively.

4.3 Service Components on Our Hierarchy-Extended Router

Communication between different processor tiers is time consuming, imposes
additional limits on packet throughput and comes at the cost of overhead that
needs to be avoided by design if possible. To explore this problem space, we
propose a classification scheme that is based on the complexity of the operation,
the rate and the type of service functionality. This classification scheme is used
hereafter to support the mapping strategy of an Anti-DDoS service onto our
router platform.

We differentiate between three dimensions as illustrated in Fig. Bl The first
dimension is the complexity of the function provided by the component. The
complexity depends on the type of procedures to be applied. For example, if
byte-patterns can be identified in a single packet only, the complexity of the

5 The chip itself is able to handle nearly four times 1 Gbit/s.
7 Some NP manufacturers provide this capability already today.
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appropriate function is lower than if a series of packets needs to be kept in
memory before the function can return its decision. The second dimension is the
rate a service component must be able to receive packets or control messages.
And the third dimension is the type of service functionality provided, i.e. data
path, control or management functionality. For the PromethOS NP platform,
it is important to know if a service component is triggered by a timer event
or upon arrival of a packet at its data input port, and if a service component
manages and controls rather a full node than a NP-blade only. We name the
first dimension processing complezity, to the second we refer by the term rate,
and the third is referred to as functionality.

For the classification of the service components of our service architecture,
we decide on the complexity, rate and the functionality. The complexity of a
function provided by a component is determined at specification time while the
initial location of components in the second dimension is based on rough estima-
tions of expected packet rates for data path service components. The location of
control and management components in the second dimension depends on the
frequency of triggers or queries the component is expected to handle. Placement
of components in the third dimension is based on the type of service function-
ality a component is expected to provide. It is important to distinguish from
service components that provide functionality on data packets and from those
that are able to control manage other service components. Hence, the function-
ality differentiates between service components residing solely in the data path
or providing functionality in the control and management plane as well.

In table [T, we present the classification of the service components of our ser-
vice architecture according to the scheme introduced above. We exemplify the
classification by explaining its application to the Packet Classifier, the Service
Handler and the Policy Handler. The Packet Classifier needs to process all arriv-
ing packets. Hence, the rate is high. However, the complexity is low since packets
can be classified based on data available in a single packet only. Remember that
this Classifier decides if a packet needs further in-depth analysis. In addition,
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Table 1. Classification

Component Complexity Rate Functionality

Classifier Low High Data path

Counter Low High Data path

Capturer High Low Data path

Dispatcher Low High Data path

Dropper Low High Data path

Rate Controller Low Middle Interface Control

Service Handler Low — High Low — High Data path/Interface Control
Policy Handler High Low Node-wide Management & Control

the functionality provided is one clear representative of the data path. Classifier
are therefore instantiated on PPs of all NP-blades most preferably. Function-
ality provided by the Service Handler is service specific. The operations to be
applied can range from rather simple byte-pattern matching of payload in po-
tentially fragmented IP packets up to complex multi-protocol attack detection,
or the detection of commonalities found in traffic anomalies of which the reason
is unknown. Thus, its complexity may range from low up to high. The same ar-
gumentation applies for the packet rate it must be able to process. Functionality
provided by the Service Handler may reside in the data path and/or in the control
plane. Since the Service Handler itself can be composed of various components,
full flexibility is required of PromethOS NP to install the specific components on
appropriate processors. It is important to notice that PromethOS NP distributes
internal control messages between different processors on the same mechanisms
as used for data communication, and imposes therefore no limitations. Depend-
ing on their complexity, service handlers are therefore instantiated either on CPs
or PPs of the required NP-blades. The Policy Handler provides management and
control functionality that supervises potentially all NP-blades. As an aggregat-
ing function with an expected low-bandwidth communication interface but high
service complexity, it is predestined to be instantiated in the PE on the host
GPP. Following this classification of the components, we specify the following
mapping of components on the hierarchy-extended platform:

— Components with a low complexity and a high packet rate are placed on
packet processors most preferably. Thus, promising candidates are the Packet
Classifier, the Counter, Dispatchers as well as the Dropper. Depending on
the complexity of the Service Handler, parts of it like byte-pattern matching
are candidates as well.

— Components with a high complexity and a low rate are installed either on
the control or on the host processor. The exact placement depends on the
kind of interaction among components. Thus, candidates to be installed on
these GPPs are the Rate Controller, the Policy Handler and the Capturer.
For obvious reasons, particular components of the Service Handler may or
must reside on GPPs, as well.
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— The functionality dimension determines if a component can be installed on
packet processors or must be placed on GPPs. Data path components can
be installed anywhere. Although theoretically feasible on PPs, control and
management components that are triggered by timer events are installed on
GPPs. Thus we decide to place the Rate Controller on the respective CP of
the PPs, and place the Policy Handler on the host processor.

PDs provide resource accounting and enforcement mechanisms. By the means
of the Resource Controller, service re-configuration can be implemented to allow
for the relocation of service components at service run-time. Thus, service com-
ponents could be relocated if their location in the classification scheme changes.
However, our platform provides no explicit support for state preserving or ser-
vice component migration. Based on the measurements of the Rate Controller,
the Policy Handler could provide the required functionalities to trigger a re-
deployment of the service with different attributes.

5 Related Work

Various active router platforms following the component model have been pro-
posed for single processor systems [I1[10,20]. However, only a few addressed the
problem of managing hierarchical active network nodes with integrated support
of NPs.

VERA [1§] introduced the hierarchy of classifiers as a chain of classifiers which
is mapped on a model of a hierarchical router. It defines extensibility as the abil-
ity to provide resources for additional services. However, the core components of
VERA do not provide at run-time extensibility, and VERA does not deal with
the complexity of instantiating services that span all tiers arbitrarily. Compared
with PromethOS NP, VERA takes programmability of packet processors into ac-
count, but packets are forwarded to a statically linked operating system running
on the host GPP.

NetBind [4] proposes an approach to construct data paths dynamically on
a network processor based router. Low latency on dynamic binding is achieved
due to post-processing of intermediary object files before linking the compo-
nents. For this reason, no overhead takes place at the execution time, except for
the machine code changes. In comparison to PromethOS NP, NetBind is not a
generic framework for adding new services on network processor based routers,
i.e., NetBind does not deploy services on all tiers of the processor hierarchy in
an integrated way.

SPLITS [12] creates a router architecture built of attached network processors
line cards and host processors. While SPLITS provides the same functionality as
VERA and NetBind for network processors, functionality is extended by stream
handlers that allow for flexible interception of packet flows to attach arbitrary
applications. Like VERA and NetBind, SPLITS does not address the potential
of CPs for the execution of services. However, we are convinced CPs are and
will be an important processing element on large hierarchical routers for router
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scalability reason. Therefore, we provide the concepts and mechanisms required
for services of which service components reside on one, several or all processor
tiers including CPs.

The potential of active countermeasures against large-scale distributed de-
nial of service attacks in the Internet has been recognized before. FIDRAN [13]
proposes a service framework similar to ours. However, the service architecture
focuses on a single host GPP node only, and hence, is not able to benefit from
additional processing capabilities offered by a hierarchy extended active network
node. FLAME [2] built and evaluated a monitoring system that can be used to
detect distributed denial of service attacks. Similar to FIDRAN, the system is
designed for single host GPPs only. In [21], the application of re-configurable
hardware to detect signatures in payload of packets is proposed. While we are
convinced that the FPX is able to scan packets for signatures much faster than
our architecture, we argue that our architecture provides more flexibility as re-
quired for, e.g. selective packet capturers.

6 Conclusions and Outlook

In this paper, we have analyzed the problem space of detection mechanisms and
countermeasures against large-scale distributed denial of service attacks in the
Internet, and presented briefly the architecture of PromethOS NP. PromethOS
NP provides a dynamically extensible router platform for hierarchical network
nodes built of host and network processors for high-performance packet process-
ing. Motivated by the continuously increasing significance of the Internet to busi-
ness and commerce, and the always quicker spreading of newly created worms
and viruses, we have proposed a service architecture that allows for the efficient
deployment of new service functionalities to detect and counteract DDoS attacks
effectively on high-performance routers for the Internet backbone. The classifi-
cation scheme proposed in this paper alleviates the design and implementation
of specific Anti-DDoS service components that benefit from our service archi-
tecture, as well as from the flexibility and the capabilities of our PromethOS
NP router platform. Hence, we are convinced that our service architecture in
conjunction with PromethOS NP provides the flexibility and performance re-
quired for detection mechanisms and countermeasures against DDoS attacks in
the Internet. Moreover, it is flexible enough to provide the basis for services in
completely different fields like charging and accounting of traffic. Currently, we
are implementing the proposed service architecture on PromethOS NP. The eval-
uation of this implementation with appropriate Anti-DDoS service components
will show whether our claims hold.
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Abstract. Active and programmable network technologies strive to support
completely new forms of data-path processing capabilities inside the network.
This in conjunction with the ability to dynamically deploy such active services
at strategic locations inside the network enables totally new types of
applications. In this paper we exploit these network-side programming
capabilities to realise a new active network application that dynamically
evaluates network link costs based on in-line traffic measurements. The
performance experienced by the data packets (e.g. delays, jitter and packet loss)
along network or virtual links is used to compute link costs based on multiple
cost metrics. The results are published by means of a routing metric broker,
which enables available routing protocols to calculate different sets of routes
for different QoS metrics — as for example suggested for ToS-based routing
(RFC 1583).

1 Introduction

Active networks research over the last decade has led to new developments in a
number of areas ranging from secure programming languages [1,2], mobile code
techniques [3], execution environments [3,4], active node platforms [5,6,7,8,9],
service composition models [9,10,11], and so forth. Despite these valuable advances,
the number of genuine applications where active network technologies are provably
useful in real world networks is still limited.

A large number of applications proposed so far [12,13,14] aim to demonstrate the
functionality of certain active platforms, while others try to address problems that are
best solved with conventional techniques such as (mobile) agents. Active networks
are often regarded as a neat technology in seek of genuine applications, which would
persuade operators that the benefit of active networks exceeds the corresponding cost
and risk involved in deploying and managing them.

We anticipate that active network services expose some properties that allow
problems arising from e.g. network operation and management or service deployment,

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 188 2007.
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to be tackled in a more generic/elegant way. Being dynamically deployable on-
demand, in a transparent and potentially automatic fashion at relevant points in the
network, active services are suitable for a much wider range of applications/problems.

In this paper we focus on the use of the in-line traffic measurement framework [15]
as an active service to facilitate dynamic routing link-cost updates that reflect
fluctuations in traffic performance attributes. Routing adjustment in response to
varying service quality characteristics can improve overall network stability and
performance, and presents a challenging task that really benefits from active and
programmable networks. In-line traffic measurements are used to assess the
performance experienced by the flows along a transmission path, and measurement
results are used to periodically adjust the network link costs in the routing protocol.
As traffic measurements typically encompass a range of different characteristics
(i.e. delay, jitter, packet loss, etc.), the calculation of link costs can be based on a
multitude of different cost metrics. This allows for route optimisations tailored to
specific applications or classes of applications with different QoS requirements
(e.g. real-time synchronous applications vs. asynchronous applications).

The remainder of this paper is organised as follows: In section 2 there is a brief
presentation of in-line [Pv6-based measurements technique, and a discussion of why it
is a particularly well-suited application of active networks technology. Furthermore,
we describe the LARA++ active router framework, which has been used for the
deployment and operation of the proposed service. In section 3, we present the design
of the proposed active service, and we show how it can be implemented and deployed
using LARA++. Section 4 presents some experimental results demonstrating the
applicability of the in-line measurements and the proposed active service. In section 5,
we examine the related work in the area of network measurements, and on dynamic
metrics-based routing. Finally, in section 6, we conclude this paper by summarizing the
proposed work and motivating some directions for future work.

2 Background

2.1 In-Line IPv6 Traffic Measurement

In-line measurements [15] is a technique to assess the QoS properties experienced by
IPv6 flows accurately, independent of a particular network topology and transparent
to the end-user applications. The in-line measurements are carried out between two
(or more) points in the network by piggybacking the relevant measurement data onto
the actual data packets that are observed.

IPv6 extension headers [16] allow Type-Length-Value (TLV)-encoded data to be
inserted between the main IPv6 header and the upper (transport) layer header. Depending
on which type of extension header is used for the traffic measurements (for example,
destination options header or hop-by-hop options header [16]), one can control where and
when to trigger the measurement activity. For example, in case the destination options
header is used, traffic measurements will only be triggered end-to-end; whereas in the
case of the hop-by-hop options header, any node along the transmission path could be
involved. Moreover, the use of measurement information in the destination options
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header in conjunction with the routing header allows precise definition of where the
traffic measurements in the network should take place.

The main benefit of this technique is that the traffic measurements are based on the
actual user traffic rather than on general measurements based on other traffic flows. In
addition to this property, by enforcing option processing only at identified nodes in
the network and not hop-by-hop, in-line measurements eliminate the concern of
instrumented packets being treated differently than the rest of the traffic in the
network. Consequently, the measurements really reflect the performance experienced
by the user data transmitted.

At the same time, the header extensions for the traffic measurements are defined by
the network layer protocol itself, making the technique native, and equally applicable
to any type of traffic (independent of the actual transport or user application).

Several measurement TLVs have been defined to be encoded within the IPv6
destination options header, which is examined by the final destination or optionally pre-
defined intermediate nodes (based on the routing header) of a packet. Different TLVs
implement a variety of performance metrics' by carrying packet departure/arrival
timestamps, IP-based sequence numbers, trace information, etc. [17].

The clear separation of concerns between the measurement mechanism and
particular analyses engines or post processing measurement applications, makes in-
line measurements a promising candidate-application for active and programmable
networks; measurement instrumentation is deployed only where and when required,
and the results are used as input for a variety of network operations tasks.

Figure 1 show different points along an end-to-end transmission path, where in-line
traffic measurements can be deployed. End-systems as well as selected intermediate
network nodes can be equipped with in-line measurement functionality. The node that
starts the traffic measurement process inserts the desired extension header into the
relevant data packets. These packets are then processed by the instrumented nodes
along the transmission path. The measurement information is recorded, amended
and/or extracted accordingly.

In this paper, we focus on a particular application of in-line traffic measurements,
whereby the measurements of up-to-date transmission characteristics (such as delay,

_source_ _destination_
. %’%% End-to-end path
: T
Host <A> Node <B> Node <C> Host <D>

Intermediate path

Intermediate path

Intermediate path

Fig. 1. The different notions of end-to-end

! A set of performance metrics are defined within the IETF’s IPPM WG.
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jitter, packet loss and so forth) are used to dynamically update network link costs, so
that routing decisions can be made more accurately.

Suitably selected active routers are used to deploy the measurement modules as
they are needed, in order to adjust network link costs according to the current
transmission performance. In the context of figure 1, active routers can be nodes <B>
and <C>, and the intermediate paths can be a point-to-point link or a virtual overlay
link that spans across several hops in the underlying network.

The proposed traffic measurement application is particularly well-suited for active
networks for a number of reasons:

e [t is directly deployed on the data path

e [t relies on direct access to data packets on the forwarding path (to support
transparent measurements — independent from the applications)

e It needs to be deployed, activated, and configured dynamically whenever and
wherever there is need for it

These characteristics advocate the realisation of the add-on service as an active
service, offering the flexibility (and the ability) of on-demand deployment within the
network.

2.2 The LARA++ Architecture

The LARA++ [9] active node framework is a software implementation of a
programmable router that is designed for commodity operating systems. It augments
the functionality of a conventional router/host by exposing a programmable interface
which allows active programs, referred to as active components, to provide network
level services on any packet-based network.

Since LARA++ “hooks” directly into the router’s operating system, it enables the
transparent interception of packets traversing the node. Intercepted packets can be
processed by active components and then be re-injected back into the host OS for the
default processing on the node. In this way, LARA++ can flexibly extend (as opposed
to alter) the functionality of a router’s conventional network services, enabling
lightweight augmentation of existing network services and allowing for gradual
replacement of conventional router functionality. We consider this feature especially
useful for our in-line traffic measurements, since it facilitates transparent processing
of the relevant data traffic within selected nodes.

LARA++ treats a router as a resource shared by all its users. The extent of
programmability can be adjusted on a per-user or group-of-users basis, as well as
based on resource availability. Active components of different LARA++ users are
protected from each other by a safety model that gives each component a sandbox
called a processing environment (PE). For performance reasons, however, LARA++
allows users that trust each other to execute their active code inside the same PE.

LARA++ uses a sophisticated model for service composition [18]. Each
component that is to become part of the service composite on a running active router
installs one or several packet filters into nodes of a directed graph, referred to as the
classification graph. These packet filters specify rules that LARA++ uses to determine
if traversing packets need to be processed locally. Once a packet is matched,
LARA++ delivers the packet to the components that registered the filter for
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processing. The use of a configurable classification graph allows LARA++ to process
packets of any type ranging from standard IP packets over active packets with ANEP-
style [19] headers to completely bespoke packet formats. As a result, service
composition on LARA++ active router is defined implicitly by the classification
graph and the packet filters installed by the active components. This type of
composition approach provides a means to control both co-operation and competition

among active components [18]. Figure 2 illustrates this concept in more detail.
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Fig. 2. The LARA++ Classification Graph

Packet filters are extremely flexible from the component developer point of view,
because they enable the description of packets that are subject to active processing
based on any bit or byte pattern. Yet, in most common cases it is sufficient to consider
the flow information and/or the existence of specific header values in the packet.
LARA++ filters are easily specified and installed by active components using an

XML-based mark-up language.
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The LARA++ active router framework also encompasses a generic service
deployment protocol, called ASDP [20], that allows dynamic deployment and control
of active services on remote active routers. We consider this particularly valuable in
order to deploy traffic measurement support inside the network where desired.

3 Design and Implementation

The proposed mechanism consists of two main modules. The first module is
responsible for carrying out the in-line measurements. It has been implemented as a
standalone LARA++ active component that registers the relevant packet filters
(depending on the flows of interest) at the IPv6 node of the classification graph [9]. It
exposes an API that allows other components or user applications to use it. The
second module is a user-space application that reads and processes the measurement
data, and maintains a data structure with separate metrics for the different types of
measured attributes in the network (e.g. delay, jitter, packet loss, and so on). In order
for the two modules to interface effectively, the evaluation module registers a
callback interface with the measurements module. Periodically, the measurements
module contacts the broker through the callback interface to stream the raw
measurement data. Figure 3 illustrates the design of the proposed mechanism and
shows how the two modules interface with each other.

Processing ! OSPF
Engine > Routing ] :
) | Routing
ﬁ Motiics <« Protocol
Storage | 7T T T " T Tty "
Ftel =T ' Interfacing Specific
Routing Metrics Broker Module . Module Structures
; .
‘ I
=1 I ' RIP
= . " . ) 1
g } Timestamping ] Routing
z I Measuring s mn Protocol
) | element ! Inferfacing Specific
g i ; : Module Structures
3 | Sequencing Lo T
3 | Measuring \
g | Element
— | B eanaa
- ! Pluggable ' IS-IS
g ! Measurement ' : Routing
g | Elements e e - Protocol
o T e .| |Interfacing Specific
= i Trace [V Structures
=2 } Measuring e
9l _ | Element
c |
0 |

Fig. 3. Basic Design of the Active Service

The following sections describe in more detail the internal implementation and
functionality of these two modules.
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3.1 In-Line Measurements Active Components

The central functionality of this module is to perform the in-line measurements. As
shown in figure 3, this module consists of two main parts: i) a plug-in framework and
ii) a set of measurement plug-ins. The plug-in framework provides the functionality
for creating the appropriate destination options extension headers and for
inserting/extracting the measurement data of previous nodes (which are encoded as
TLV options). It exposes the necessary API for other applications to access the
measurement data, to manage (add/remove/configure) the plug-ins, and to configure
the filtering parameters. Filtering can be based on the source and destination
addresses and ports, on transport protocol, traffic class, and on flow label values.

The plug-ins are the code elements that carry out the actual measurements and
generate the appropriate data that are inserted in the IPv6 packet header by the
framework. Separate plug-ins are used for different types of measurements
(e.g. transmission times and packet loss). The framework can accommodate several
plug-ins simultaneously for performing different measurement (which results in more
than one TLV options records in the IPv6 destination header), although this comes at
the cost of reducing the data payload size. However, different plug-ins can create
separate measurement TLVs for different data of interest.

The framework API provides an IOCTL-based interface for registering/attaching
the plug-ins, and also adjusts the configuration parameters of the plug-ins such as the
filtering and sampling granularity. The sampling rate can be configured by defining
whether the module should instrument all packets matching the filtering criteria, 1-in-
N, or act at a specific temporal sampling rate.

For the purposes of our prototype implementation, we have used two plug-ins to
perform time and loss-related measurements accordingly. The first plug-in has been
designed to measure one-way delay (OWD) between two points along a transmission
path, as well as more synthetic time-related parameters such as jitter and throughput.
This first plug-in is used to insert and record departure and arrival timestamps of
packets at the respective measurement nodes along the transmission path. The two
measurement nodes (that add and remove the packet timestamps) synchronise their
time through the Network Time Protocol (NTP) [21].

The second plug-in enables one-way loss measurements by means of IP-based
sequencing of packets. A source node inserts incremental sequence counters to
packets belonging to the same flows, which are then observed at the destination.
Packet loss as well as out of order delivery can be effectively measured by computing
the differences of the TLV sequence numbers between successive packets.

A flow in this context can be defined at different levels of granularity. At a fine
granularity level, it can be the sequence of packets with the same source and
destination IP addresses and transport ports. On the contrary, a flow can also be
defined by all the packets traversing a certain point-to-point or virtual/overlay link.
The next hop will also have to run the corresponding measurement module to keep
track of sequence numbers as the packets arrive.

The in-line measurement component implemented for our LARA++ active router
architecture registers the following packet filters with the classification graph: one or
more filters for the outgoing packets of interest (the number of filters here depends on
the filtering parameters configured by the measurement application) and one filter for
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the incoming IPv6 packets that contain our measurement header. Once a packet of
interest is filtered, it is pulled out of the forwarding path and handed to our in-line
measurement component. Depending on which filter captured the packet, TLV-
options are either inserted or extracted accordingly. The packets are then inserted
back to the classification graph for further processing.

The information extracted from the incoming packets is delivered to the external
broker module that has expressed interest in the respective measurement data. The
role of the broker module is further described in the following section.

3.2 Routing Metrics Broker Module

This control module accesses the in-line measurement active component in order to
configure the in-line traffic measurements and collect the results. It is responsible for
extracting and processing the appropriate raw measurement data, and for updating the
costs table according to the routing metrics of interest. Node-local running routing
protocols can then access these up-to-date cost metrics and optimise their routing
information. In this way, routing protocols can always decide optimal routing paths
based on up-to-date link quality information (with regard to the chosen metrics).

The current prototype of the broker module is implemented as a user-space
application. The traffic measurement process starts by initialising the broker module
where the user specifies the (virtual) link and the packet flows that should be used for
the in-line traffic measurements. The user also selects which measurement plug-in
instruments which flows.

At start-up, the broker module instruments the installation and activation of the in-
line measurement components on the respective active routers on both ends of the
(virtual) link. Note that in the case of a virtual link (tunnel), the in-line measurements
module will be installed several routing hops apart from each other, which enables the
measurements for a whole routing path as opposed to a single physical link. This
process takes place using the existing active network loading mechanism supported
by LARA++.

The broker module then establishes the necessary communication channels with
the in-line measurement components, to pass configuration parameters such as the
packet filters and sampling rate, and to receive the measurement results. Based on this
data, the broker computes the appropriate link cost metrics that have been registered
by the routing protocol(s) or other applications.

Once the in-line measurement component starts performing the measurements and
delivering the measurement results, the broker module processes the data and updates
the cost metrics data structure. This data structure stores single-value link costs
for each measured attribute. It is accessible by the routing protocols through a
“well-known” API so that they can update their internal data structures periodically,
in order to reflect the dynamic link cost changes.

Since our main goal is to demonstrate the proposed functionality, our current
implementation simply sets the cost values by averaging the N most recent
measurements. More sophisticated calculations could be based on averaging a set of
past cost values combined with the N most recent results or any other algorithm that
would deliver a less fluctuating set of cost values.
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Furthermore, since existing routing protocols typically do not use generic data
structures among them and neither share a common representation of link costs or
routing metrics, those ones that want to benefit from the in-line traffic measurements
have to be extended. As shown in figure 3, we propose that the routing protocol will
interface with our broker module through its own proprietary interface adapter. For
example, the interface adapter for OSPFv3 would calculate OSPF-specific link costs
from the measurement results and update the internal data structures accordingly.

4 Evaluation of the In-Line IPv6 Measurements Mechanism

For the evaluation of our mechanism we used the IPv6 testbed infrastructure [22] at
Lancaster University, where we have deployed two LARA++ active nodes (at points
A and B) as illustrated in figure 4. We created an artificial, yet realistic, network
condition, where we stressed the ADSL uplink (at the tunnel connection) by
generating 512-byte TCP/UDP traffic at an exponentially increasing rate of up to 62
packets per second. The WaveLLAN link on the other hand, being part of the campus
WiFi network was subject to the usual (relatively congested) traffic encountered at
midday hours.
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Fig. 4. Experimental Network topologies

We then triggered the installation of the proposed active service on node A and B
according to the process described in section 3, and deployed the timestamping plug-
in (for one-way delay and jitter) to instrument UDP traffic and the sequencing plug-in
(for packet loss) for measurements on TCP traffic, respectively. These choices are
justified by the fact that TCP performance is known to be vulnerable to packet loss
(continuous back-off), whereas UDP performance is impacted by increasing delays
and delay variations (buffer adjustment requirements).

After processing the measurements for appropriate time intervals using the broker
module, we got the results illustrated in figures 5 (ADSL downlink), 6 (ADSL uplink)
and 7 (802.11b), with regard to packet loss, delay and jitter. Table 1 summarises these
results.
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Comparing figures 5 and 7, we observed that the packet loss on the tunnel link is
approximately 5% versus 4.8% for the WaveLLAN link, yet the wireless link exposes
more bursty characteristics. The delay experienced by the UDP flows over the tunnel
connection was slightly better than on the WaveLAN link: the mean delay was 15.4
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ms over the tunnel link versus 19 ms on the wireless link and 75% of the
measurements yielded values less than 18 ms over the tunnel as opposed to 23 ms on
the wireless link. Finally, jitter in both cases is almost the same, with most values
laying between 1 and 2 ms. As a result, under the current congestion patterns, the
WiFi network and the one (downlink) direction of the tunnel link exhibit similar
characteristics, with the tunnel link having slightly better and more stable behaviour.

Figure 6 shows the performance of the ADSL uplink while becoming increasingly
saturated by the artificially introduce data traffic. Under the very high stress, the
tunnel link is hardly usable: 53.6% packet loss and rapidly increasing delays. This can
be observed in the upper plot of figure 6(b).

Under these traffic conditions, we can derive that the fittest routing configuration
in our testbed is the asymmetric routing of traffic from A to B over the tunnel link and
from B to A through the wireless link.

Table 1. Performance Statistics for the Different Links

Delay Jitter
Mean 75% 25% 75% Pﬁg]s‘set
Quantile Quantile Quantile

ADSL 1558 ms | 1768 35 ms 44 ms 53.6%
Uplink
ADSL. 15.4 ms 18 ms 1 ms 2 ms 5 %
Downlink
IEEE
302.11b 19 ms 23 ms 1 ms 2 ms 4.8 %

Currently, according to the conventional operation of routing protocols, a router
would select either the WiFi link or the tunnel connection to transport traffic between
the points A and B. The choice would be based on static costs assigned to the two
links based on their media type. In our setup it would always select (unless otherwise
instructed) the WiFi link, since by default it is preferred over a virtual link, even if the
latter had bigger capacity. This happens because the link cost assigned to the virtual
link in absence of any other qualitative information is based on the distance metric.
This default configuration can only change through the manual and static intervention
of the administrator.

Based on our proposed mechanism, the routing protocol can dynamically adjust the
link costs of both the tunnel and the wireless links based on the dynamic in-line traffic
measurements (in response to their varying characteristics). In the case of our
particular setup, the routing protocol would be able to detect the need for asymmetric
routing and adapt the routing accordingly. Also, the ability of performing in-line
measurements for specific classes of traffic, for example based on the transport
protocol or Type-of-Service (ToS), is expected to benefit the implementation of ToS-
based routing.
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5 Related Work

Existing traffic measurement techniques and infrastructures fall into two main
categories, namely active and passive techniques. Active measurement techniques
inject additional traffic with known characteristics into the network to test particular
attributes of a service [23, 24, 25, 26], and they have been focusing on characterising
properties of end-to-end network paths between instrumented systems. Passive
measurements give highly accurate results by observing and analysing real traffic on a
link without disruption of the service. They mainly operate at a single observation
point within an administrative domain and try to provide feedback for network
operations tasks [27, 28, 29, 30].

Active and passive measurements rely either on the performance experienced by
dedicated traffic or on the costly correlation of one-point observations to yield one-
way performance results, and do not provide a framework for performing accurate
and transparent service-quality measurements for different traffic flows that can be
deployed on-demand in the network.

Work on QoS Routing research has considered adaptive routing based on dynamic
cost metrics. Some early work focused on ToS routing [31], which is either based on
using multiple instances of routing protocols or maintaining routing tables with
multiple metrics for different network attributes (i.e. delay, throughput, etc).
Nevertheless, the link costs considered were static according to the natural
characteristics of the link as it is the case with most routing protocols today.

Other solutions that have been proposed in this area advocate the use of destination-
driven/initiated routing path computations and updates towards them [32, 33]. Clearly,
these solutions are neither scalable nor pervasive, since they typically involve flooding
mechanisms that cause both significant traffic overhead and high complexity. As a
result, they suggest viable solutions only for maintaining routing paths to a small
number of frequently used destinations. And, although they are quite dynamic, they
often don’t account for multiple metrics needed for the different attributes.

A different approach for tackling congestion problems and therefore improving
communication, has led to the idea of multipath routing. Work, such as the one
presented in [34] and [35], propose probabilistic or other methods of load balancing the
traffic across multiple routing paths. Although these solutions differ fundamentally
from our approach, yet, we believe that our mechanism can complement these
solutions to improve their performance through dynamic adaptation.

Finally, the deployment of reconfigurable middleboxes or active network-based
solutions has been considered in [36] and [37] in order to adapt or change the network
configuration to match current traffic requirements. However, most of these solutions
are not embeddable in general routing fabrics, but rather focus on out-of-band
allocation of QoS resources in order to improve communication for individual flows.

6 Conclusions and Future Work

In this paper we have presented a new service for active networks based on the
concept of using in-line traffic measurements to improve intra-domain routing. The
main idea and contribution of this work is to provide the necessary mechanisms to
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accurately measure dynamically changing link (or virtual link) properties including
delay, jitter and packet loss. This measurement information is then fed to available
routing protocols so that they exchange more accurate, performance information
about the links, enabling more prudent routing decisions. We have focused on the
functionality and the design of the proposed mechanism to advocate its feasibility and
applicability in an active network environment.

Future work will investigate the impact of the proposed mechanism on the routing
protocol behaviour, as well as on how the measurement results can be used to
generate meaningful link cost values (for specific protocols). We aim to tackle the
fine-tuning of the mechanism and its viability when used in conjunction with today’s
routing protocols, in wired, wireless, and overlay network environments. Steps in this
direction include the investigation of optimal time and sampling intervals for the
measurement processes, as well as of novel algorithms for the link cost calculations.
Application-specific routing based on performance properties of interest to different
flows can also be facilitated.

We expect the proposed traffic measurement solution to be particularly applicable
to overlay networks and mobile ad-hoc networks, since it enables the deployment of
an always-on active service at strategic locations, where network characteristics
change rapidly. In overlay networks these rapid changes result from the combination
of a (often varying) number of underlying physical links that form the virtual network
links, whereas in the case of mobile ad-hoc networks it is a result of the often
changing mobility patterns and the environment affecting the wireless interfaces. We
anticipate the proposed solution to be particularly valuable in both these cases.
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Abstract. Whether driven by security concerns, need for flexibility, deploy-
ment of advanced services or as a simplified outsourcing model, overlaying a
virtual service topology over the underlying network infrastructure is common.
To ensure and enforce consistent service quality, fairness and protocol behavior
it is necessary to measure and monitor these service level topologies. In this
paper we present extensible general purpose mechanisms to monitor and meas-
ure characteristics of a service level topology at the nodes of the topology. The
mechanisms provide means to dynamically deploy a distributed observation
function at the nodes of the topology and to collate the observations into a result
given to the requestor on a subscription channel. These are control plane
mechanisms, outside of the router datapath, where we assume programmability
and low cost memory. We give several examples of how to use these mecha-
nisms to compute interesting properties of the topology.

Keywords: Service aware networking, measurement, service management,
overlays, VPN.

1 Introduction

Whether driven by security concerns, need for flexibility, deployment of advanced
services or as a simplified outsourcing model, overlaying a virtual service specific
topology over the underlying network infrastructure is a common solution approach
for all types of network technologies. Static service topologies include “private net-
works” built using leased telephony lines to ensure isolation, and Internet “bones”
based on statically allocated IP-in-IP tunnels such as the MBONE, 6-BONE and the
A-bone, to provide the illusion of universal deployment over a virtual topology. More
dynamic approaches include Virtual Private Network (VPN) services in ATM [1]
established from dynamically allocated collection of ATM circuits, and Service Level
Routing (SLR) over the Internet providing non-local redundancy and load balancing
across a network of service locations [2]. Similarly, application level services, such
as application layer multicast, build a service specific topology. Many proposed
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active networking services explicitly or effectively build an overlay topology. Recent
interest in overlay networks can be viewed as an attempt to abstract out both the un-
derlying topology and specific network technology.

To ensure and enforce consistent service quality, fairness and protocol behavior it
is necessary to measure and monitor these service level topologies. The detailed
technologies used to realize the various virtual topologies differ. However, signifi-
cant and important commonalities make it desirable to design and implement general
purpose mechanisms to support the monitoring and measurements and algorithms to
compute values of common interest, rather than have each technology, service or
application implement a fraction of such mechanisms.

End-to-end measurements and edge based solutions [3,4,5,6], requiring no coop-
eration from the core network, have been proposed to infer the service topology for
multicast and network characteristics from edge observations. A significant drawback
of these methods is that they only compute long term averages are inherently error
prone and do not adapt well to membership changes in the service topology. We
believe that rather than employing service ignorant long term observations from the
edges, effective management of service level virtual topologies requires service spe-
cific observations from inside the service network for timeliness and relevance.

Commonly, virtual topologies are built from nodes such as boundary nodes where
functionality beyond basic forwarding is common. These nodes are prime candi-
dates and targets of active networking technology. Moreover services based on P2P
networks, application layer multicast and overlays that are implemented at the appli-
cation layer can reasonably be assumed to have high level of activity and program-
mability. Adding mechanisms for observations at the nodes of the virtual topology is
therefore achievable.

Such general mechanisms must provide a) the right abstractions for results of im-
portance, b) extensibility to support service specific observations, and c) interface that
makes it easy to employ with a variety of service level topology approaches, such as
application level overlays, ATM style VPN’s, IP-bones and network layer multicast.

In this paper we present extensible general purpose mechanisms to monitor and
measure characteristics of a service level topology at the nodes of the topology.
These are control plane mechanisms, outside of the router datapath, where we contend
assumptions of high programmability and low cost memory are valid. Moreover, we
present algorithms to collect and use these observations to compute interesting prop-
erties of the topology. The mechanisms provide means to dynamically deploy a
distributed observation function at the nodes of the topology and to collate the obser-
vations into a result given to the requestor on a subscription channel. We give exam-
ples of our use of these mechanisms in managing multicast distribution, as well as in
an control overlay for router selection in sparsely deployed services. We furthermore
discuss the use of our mechanism to collect information for load distribution in net-
work wide service level routing.

The rest of the paper is organized as follows. In Section 2 we discuss related work
and further position our work. In Section 3 we describe the basic mechanisms, and
show in Section 4 how we have used them to monitor and manage multicast service
over a dynamically constructed virtual service topology. In Section 5 we discuss how
the same mechanisms are used in general overlay/virtual topologies with two exam-
ples of control level overlays for service aware route selection. Section 6 contains
additional discussion. In Section 7 we conclude.
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2 Related Work

Network tomography from end-to-end measurements has been proposed to infer
service level topology and network characteristics from edge observations [3,4,5,6].
An attractive attribute of these methods is that they don’t require any cooperation
from the core network and therefore work for large scale discovery across multiple
administrative domains. However, a major drawback of these methods is that they
only compute long term averages and are therefore inherently error prone and do not
adapt well to membership changes. While valuable as a fallback, effective service
management requires more detailed and timely observations that can only be obtained
inside the service network.

Overlays have been used for monitoring the underlying physical network for path
outages and periods of reduced performance. In [7], path restoration in the overlay
network is done by finding a route for the backup path that minimize the probability
that the primary and backup overlay paths share a link in the underlying network.
In [8] aggressive probing between application layer overlay nodes is used to do
fault detection of Internet paths and recovery is performed by routing by way of the
overlay nodes instead of the IP routing. Although using overlays to monitor the
underlying physical network can be a powerful approach, with our mechanisms we
are primarily interested in monitoring the overlay and service level topologies
themselves. We are not aware of any mechanisms for monitoring general overlay
and service level topologies.

Related to the monitoring of general service level topologies is the monitoring of
multicast. A number of mechanism and tools for monitoring multicast topologies
have been enunciated [9] but most of these mechanisms are protocol dependent, in-
flexible and can not easily be generalized to other services or topologies. The mecha-
nisms presented in this paper on the other hand can be used to monitor more general
topologies and we give an example of how they have been used to monitor the SLIM
network layer multicast protocol.

Our mechanisms inherently implement a control plane that supports many-to-one
and one-to-many operations for the purposes of measuring and monitoring general
topologies. Essentially our mechanism can be viewed as combining active multicast
and active gather-cast [10] to realize the measurement functions.

Some of the ideas behind our work are similar to what is presented in [11]. How-
ever, even though all state maintained by our mechanisms is soft and possibly short-
lived it is not self destroying in the same sense as defined in [11]. In contrast the state
maintained by our mechanisms is explicitly introduced and assumed to exist for a
substantial amount of time.

3 Description of the Mechanisms

The mechanisms perform three main functions: 1) local maintenance and information
collection from the local service level module, 2) a distribution mechanism to propa-
gate (new query) functions and information from a collection point to the active nodes
of the topology, and 3) information gather implemented by a protocol that propagates
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information from leaves in the topology towards a designated root applying a (query
specific) summation function at each intermediate node. Fig. 1 depicts the gather and
distribution mechanisms.

Gather ) Distribution )
Information Information from
toward root upstream node

Local Local
Topology | —9 Topology | —
State State
Information from downstream nodes Information to downstream nodes

Fig. 1. The gather and distribution mechanisms

We refer to the single source tree rooted at the observer as the collection channel.
Each node in the collection channel, apart from the root, has exactly one upstream
neighbor and zero or more downstream neighbors. The local state at a measurement
node consists of the topology identifier of the channel source, the source specific
channel identifier (a single source can have multiple collection channels), a down-
stream state per each downstream neighbor and the local topology state from the ser-
vice level module.

The mechanisms implement the collection and computation of three general base
attributes that we believe are of sufficient value to most service level topologies,
namely the number of leaves of a collection channel, the total number of nodes in a
collection channel and the height (or max depth) of the collection channel. The
mechanisms define local collection, sum and distribution operations that can be dy-
namically instantiated on a per service basis or service defined per flow basis. The
mechanisms are designed for the control plane and outside of the data forwarding
path.

3.1 Local Collection Mechanism

The information collection mechanism is a module that contains the service specific
objects for each service level topology the node may be operating. Each object col-
lects the service specific local state from the topology manager running on the node.
We define an abstract interface that each service level topology manager implements,
enabling it to export its local state to the object performing the local information
collection.

Interface local_state;

local_state* getLocalState(void) ;
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The local_state object and the getLocalState function must be imple-
mented as part of an adaptation of our mechanisms for a given topology management
system. The content of the local_state may vary between topology mechanisms,
and may for example be different for a network layer multicast topology management,
than for an application level overlay.

Our mechanisms support dynamic installation of local information collection mod-
ules on runtime, thus adapting and enhancing the local collection abilities of the node.
This allows for dynamic installation of objects for new services.

3.2 Distribution Mechanism

The distribution mechanism propagates a query object from the root of the collection
channel towards the leaves. The root creates a distribution message and sends a copy
on each interface of the virtual topology where the destination address of the message
is a collection channel specific identifier C. The format of the distribution message,
shown in Fig. 2 lower half, consists of some (topology specific) base values, a type
identifier, type specific data and the sum and distribution operations for the service
type. If a new type identifier is provided the node installs the code for the summation
and distribution methods.

Gather message

base |type ID| length | data| ------- type ID| length | data

Distribution message

base |type ID | data @ @

Fig. 2. The gather and distribute messages respectively

A node receiving a query object records the source address of the message as the
root of the collection channel and the destination address as the channel identifier.
The distribution method specified by the type identifier in the message is then applied
to the message. The distribution method may retrieve the local state from the topol-
ogy manager, before producing a new message to be forwarded to each downstream
neighbor in the virtual topology. In the simplest case the new message forwarded
downstream is the same as the arriving one. In other cases a different message may
be forwarded to each neighbor.

From a functional point of view the primary use of the distribution mechanism is to
allow the collection point to subscribe to the continually updated computation of
results specified by the query object. Since the query object is an arbitrary code
(supported by the execution environment of the topology) the range of queries that
can be computed is substantial. A query subscription results in the gather process
being activated to periodically to compute a distributed time dependent global state



210 G. Hjdlmtysson, O.R. Helgason, and B. Brynjtlfsson

estimation at the collection channel root. A distribution message with a null value for
the summation operation will cancel the subscription.

An important use of the distribution mechanism is to distribute information from
the root of the collection channel to the nodes of the topology.

3.3 Gather Mechanism

The gather mechanism propagates information from the leaves of the collection chan-
nel towards the root by periodically sending updates upstream. At each node the
gather involves two functions: a) Receiving and processing gather messages from
downstream, and b) preparing the sending a gather result upstream. The two func-
tions are performed asynchronously on each channel.

A gather message received from downstream on a given channel is simply stored
as part of the channel gather state, and overrides any previous state on that channel
from the same downstream node.

To compute the new gather result, for a given channel, the summation function of
each message type associated with a given channel is invoked, each function produc-
ing a type specific result, that is appended to the message being prepared. The sum-
mation function uses the downstream gather state for each downstream neighbor and
the local state from the topology manager.

The format of the gather message is shown in Fig. 2. The message consists of
some topology specific set of base values (leaves, weight and height) at a node and a
segment for each type of collection function associated with the channel (by a previ-
ous distribute message). Each service specific segment consists of a service type ID,
service specific header length and service specific data.

3.4 Computing the Base Attributes

The general base attributes computed for each collection channel are the number of
leaves (I), the total number of nodes (w) and the height (&) of the collection channel.
The number of leaves can be estimated at the root of a collection channel using the
gather mechanism. The base field of the gather message contains a leafcount field
used by the nodes in the collection channel for this computation. A leaf node sets the
value of the leafcount field in the gather message to 1 and sends the gather message
towards the source as usual. An upstream node n computes the number of its down-
stream leaves according as the sum of the leafcounts from all its neighboring down-
stream nodes. More generally the leafcount at a node n is computed according to

;- 1 if nisaleaf
" zl.i otherwise

jedown(n)

where down(n) is the set of neighboring downstream nodes of n. This way the leaf-
count at the root, I,,,,, is simply the current estimate’ of the number of participants in

! Note that due to packet losses, delays in delivery and asynchrony across the topology the
result may not be accurate, but is instead a (very good) estimate.
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the collection channel. More generally the leafcount at any intermediate node is the
number of participants in the subtree rooted at that particular node.

In a similar manner to the estimating of the number of participants the gather
mechanism is used to estimate the number of internal nodes in a service level topol-
ogy. We define the weight of a collection channel as the number of all nodes in the
channel, both leaves and internal nodes. The weight at a node # is then given by

! if nisaleaf
w. =
P 2w, otherwise

jedown(n)

The height of the collection channel can be computed by finding the subtree with
the maximum height and adding one to that value. More generally the height 4 of any
node 7 in the collection channel can be computed according to

f 0 if nisaleaf
! 1+ max {hj} otherwise
jedown (n)

To reflect the latest changes in the topology, each node periodically sends a gather
message towards the root of the collection channel containing the latest values for /, w
and A. The distribution mechanism can be used to propagate the number of partici-
pants estimate from the root to all nodes in the collection channel.

3.5 Characteristics and Implementation Assumptions

An important tradeoff in the realization of the gather mechanism is the length of the
update period. A short update period gives better state estimates at the increased cost
of bandwidth and processing at the nodes. In general the update period should depend
on the packet volume of the service being monitored to ensure that the overhead of
maintaining the gather state is a some small fraction of the volume of the service flow
(say less than 1%) or overall resources. The mechanisms support the dynamic adapta-
tion of the refresh period.

We do not assume reliable delivery of the distribute or the gather messages. Con-
sequently, message loss may affect the effectiveness of the mechanisms. As queries
are effectively subscriptions, repeated transmissions of distribution messages can be
employed to ensure completeness, potentially resulting in some but inconsequential
delay in query distribution.

A more persistent impact is caused by losses of gather messages, resulting in the
current estimate at the collection point being a random number continually affected
by losses. Our approach described above is designed to minimize the impact of a
single packet loss, as the downstream state remains valid (for some significant time)
until updated from below. Thus if an update is not received from a particular subtree
in round 7 the update value for that subtree received in round 7-1 remains in use.
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4 Monitoring and Managing SLIM Multicast

We have used our mechanisms for monitoring and managing SLIM multicast ses-
sions. The local collection mechanism communicates with the topology management
module of SLIM. We use the mechanisms to compute estimates of a number of key
properties of the multicast topology and monitor changes in these from our service
management center. In addition to trigger queries, we utilize the distribution mecha-
nism to trigger the proccess of updating running code in our implementation to en-
hance and update the monitoring abilities of the active nodes.

4.1 Self Configuring Lightweight Multicast — SLIM

SLIM [12] is a single source multicast paradigm for the Internet that self-configures
over the unicast infrastructure by dynamically building network layer IP-in-IP tunnels
as required. The SLIM signaling protocol thus constructs and maintains a dynamic
service level topology for multicast. A multicast channel in SLIM is identified by the
pair <S,C> where S is the channel’s source and C is the source specific channel identi-
fier. To create the single source distribution tree a SLIM client sends a JOIN control
message towards the source S. SLIM enabled routers intercept the messages and
create the appropriate forwarding state in their flow based classifier and construct
dynamic tunnels if the JOIN message has been forwarded through routers not support-
ing the SLIM protocol. When the JOIN message reaches the first router that is
already a node in the distribution tree of <S,C> the new branch is added to the distri-
bution tree and the JOIN message suppressed. The only multicast specific functions
of SLIM are the control plane topology management, which operates out of data-path
and manipulates router classifiers (forwarding table) and tunnel facilities.

4.2 Implementation

We have implemented a monitoring system for SLIM based services using our
mechanisms on the Pronto [13] programmable router using packet processors [14].
For the purposes of our implementation the Pronto router provides strong separation
between services and protocols implemented in a user space execution environment
and the data-path router facilities realized at kernel level. Data-path packet processors
furthermore support the composition of paths through the router. In particular, a path
can have multiple branches, each branch composed of one or more packet processors.
Thus branches may differ in functionality. For our mechanisms this allows us to
monitor the information volume sent on individual multicast branches by creating
packet/byte count packet processors for each branch.

The monitoring mechanisms are implemented as a user-space daemon. The local
collection object communicates with the Topology Management (TMP) daemon of
SLIM to collect the local state information. We have implemented this through the
use of shared memory. The TMP daemon maintains a table in shared memory that
contains the local state for each active multicast flow. The local collection object
creates a read-only instance of the class interfacing the shared memory upon which it
can invoke a getLocalState method as described in Section 3.1.
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Each SLIM channel corresponds to a collection channel where the root of the col-
lection channel is the SLIM source, S. For each collection channel the local topology
state consists of the number of active downstream branches and the system unique
identifier of each branch. The local collection state and the state from each down-
stream node is used to compute the number of leaves, weight and height of each chan-
nel using the gather mechanism. Each gather message consists of the base values for
I, w and h and in addition the number of packets and bytes received at the node for the
flow identified by <S,C>. The base values at the root of the collection channel can be
used to estimate the number of multicast receivers (leaves), longest path to a receiver
(height) and the number of internal nodes in the multicast channel as w — . Using the
byte/packet values in a received gather message a node can estimate the link lossrate
of each downstream link by comparing the downstream value with the number of
bytes/packets received.

An initial distribution message is simply sent on the multicast channel being moni-
tored. The distribute and gather messages are sent with the router alert IP-option and
a special protocol ID which results in the active nodes intercepting the messages and
dispatching them to the module implementing the mechanisms. The distribution
mechanism can be used to distribute and update running code in the active nodes.
Our implementation is in C++. The C++ code for the local collection, gather and
distribute objects of the monitoring daemon can be introduced and updated through
the use of dynamic C++ classes [15].

4.3 Bottleneck Discovery — Placement of Active Retransmission

Using our mechanisms discovering bottleneck links and deploying active retransmis-
sion is relatively easy. Each node transmits upstream the number of packets it re-
ceives on a given channel. By comparing this value to the local observation of packets
received, the gather computation reveals if excessive losses are occurring on any of
the downstream links. If so it deploys active retransmission on that particular link
(using the Pronto packet processors this is very easy to do on a per branch basis).

5 Monitoring More General Virtual Topologies

In this section we give examples of how the mechanisms can be used for general
service level topologies. A meshed topology structure does not have a distinguished
root and has multiple paths between nodes in the topology. However, from any node
a virtual topology a well defined (minimum cost) spanning tree will typically exist. A
collection point initiates query processing by sending a distribute message over such a
spanning tree.

Although a wide range of functions can be computed over general topologies using
the mechanisms, computing link attributes is more difficult than computing node
properties, as a spanning tree will visit all nodes but will not traverse all links. Of
course this can be overcome, but the mechanisms do not provide explicit support to
address this issue.
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5.1 Monitoring SLIM Router Deployment Using a Control Plane Overlay

As part of our research on multicast we have been offering televisions distribution
services and teleconferencing experimentation over SLIM multicast for over a year
now. Although the number of SLIM-enabled routers is still small their number is
growing. To better exploit available SLIM routers, to keep track of their distribution,
to update the SLIM code, and as part of our ongoing research on advanced group
management the SLIM protocol now supports a control plane overlay.

By building a spanning tree from our local SLIM router, we can use our mecha-
nisms over this overlay, to keep track of the number of routers, the diameter and den-
sity of the deployment, as well as to facilitate distribution of code updates. This is in
addition and separate from the flow level monitoring described in Section 4.

5.2 Applications to Service Level Routing

In [2] Anerousis et al employ a virtual topology of dynamically constructed tunnels to
route requests to a named service realized by a virtual host that, in theory, provides
the service. A virtual host has an IP address and appears to the rest of the Internet as a
regular host. A request from a client is routed to a particular (physical) server by a set
of service level (application level) nodes. The routing is determined in real time
through the service level routing map and may take into consideration user attributes
such as originating address, and network and server attributes such as load. Rather
than relying on modified DNS based redirection schemes at the edges of the network,
in the service level routing of [2] the service level nodes use service semantics, and
load and availability attributes to transparently routes service requests to the appropri-
ate servers based on a variety of criteria.

Requests are routed over a layered virtual topology. Client requests are routed by
the IP infrastructure to the service level router (SLR) closest to the client (using stan-
dard destination based routing). The packets are then directed to an SLR one layer up
using IP-in-IP tunnels constructed dynamically if needed. This continues until the
SLR of a particular hosting site is reached. The SLR at the hosting site further tunnels
the packets to the host that is best suited for serving the request. Each server host
terminates the tunnel and recovers the original datagram exactly as it was sent from
the client. From the addresses in the original datagram the receiving server process
learns the client address as well as a the virtual host address. Acting as the virtual
host, it transmits its replies directly to the requesting user client, using the address of
the virtual host as its source address, and avoids the service level virtual structure.
The multiple levels improve scalability and load balancing effectiveness.

In the service level routing topology the availability and load of the service level
routers, and the server hosts play a dominant role in providing consistent dependable
service quality. Given appropriate policies to determine the local load metrics at the
SLR’s or the servers, we employ our active mechanisms to propagate and update the
availability and load information in the SLR topology as follows. Each lowest layer
SLR is a collector that initiates a collection channel. The SLR at each hosting site
joins the collection channel of each leaf. At each hosting site the SLR computes a
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load metric for each virtual host hosted at the site, and propagates using the gather
mechanism. Intermediate SLR’s collate the load metrics from below, combine them
with a network load metric, and compute a load metric for the downstream tree that
are propagated upstream. Each lowest layer SLR thereby receives a metric of load
from each branch that it uses to perform load aware route selection (combined with
other criteria).

6 Discussion

Insensitivity to non-cooperating nodes. In the heterogeneous Internet assuming
uniform deployment is unrealistic. Even under active networking assumptions, ho-
mogeneity cannot be assumed, as nodes may vary in their capabilities, authentication
policies, and access given to installed services. While the correct operation of our
mechanisms does not require uniform cooperation across the virtual topology, the
effectiveness of the mechanisms is reduced. As the ratio of non-cooperating nodes in
the topology increases, it may become attractive to employ some of the techniques of
[3,4] to infer the properties of the non-participating segments of the virtual topology.
The same applies if physical topology attributes are of interest as metrics for a virtual
topology that still consists only of relatively few nodes of the physical topology.

It is relatively easy to determine the density of the virtual topology over the physi-
cal one, by tracking the TTL count between virtual hops, and summing up all physical
hops over a given channel. At a given collector, the density can then be defined as the
physical hop count over the weight of the tree.

IP as a service level topology over the transport network. In traditional network
operation models the physical network (e.g. the optical transport network) is viewed
as providing physical transport to a number of service networks running over virtual
topologies on top. In this model, IP is just another service constructing a service
specific virtual topology. Alternate models assume that the routers manage the
underlying physical resources [16]. Our mechanisms are agnostic to this and are
suitable for such an environment by deploying our mechanism in IP routers, and
could then provide the collection mechanisms described above for the IP network.

7 Conclusion

In this paper we have described extensible general purpose mechanisms to monitor
and measure characteristics of a service level topology at the nodes of the topology.
The mechanisms provide means to dynamically deploy a distributed observation func-
tion to the nodes of the topology and to collate the observations into a result given to
the requestor on a subscription channel. The value of the mechanisms is validated by
their extensive use in our experimentation with multicast. In addition we have given
examples from our experimentation with the same mechanisms over general service
topologies, including overlays for router discovery, and service level routing.
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